
Creating
ASP.NET Core
Web Applications

Proven Approaches to Application
Design and Development
—
Dirk Strauss

Creating ASP.NET Core
Web Applications

Proven Approaches to Application
Design and Development

Dirk Strauss

Creating ASP.NET Core Web Applications: Proven Approaches to
Application Design and Development

ISBN-13 (pbk): 978-1-4842-6827-8			 ISBN-13 (electronic): 978-1-4842-6828-5
https://doi.org/10.1007/978-1-4842-6828-5

Copyright © 2021 by Dirk Strauss

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6827-8. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dirk Strauss
Uitenhage, South Africa

https://doi.org/10.1007/978-1-4842-6828-5

For Adele, Irénéé, and Tristan. You are my everything.

v

Table of Contents

Chapter 1: �Creating and Setting Up Your Project��� 1

Creating Your Web Application Project��� 1

Using the .NET CLI�� 5

Adding and Editing Razor Pages�� 9

Looking at the Configuration�� 19

Working with Entities��� 23

Creating and Registering a Data Service��� 29

Displaying Test Data on Your Web Page��� 34

Chapter 2: �Creating Models��� 39

Building a Search Form�� 39

Adding Font Awesome�� 39

Adding the Search Form Code�� 40

Implementing the Find Logic��� 43

Using Model Binding and Tag Helpers�� 46

Displaying Related Data��� 53

Passing the Video ID Through to the Detail Page�� 59

Working with Page Routes��� 63

Populating Video Details��� 68

Handling Bad Requests�� 71

About the Author�� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

vi

Chapter 3: �Modifying Data��� 79

Editing Existing Data and Using Tag Helpers��� 79

Building the Edit Form�� 87

Changing the Data Service��� 95

Validate Edited Data and Display Validation Errors�� 97

AddSingleton vs. AddScoped vs. AddTransient��� 102

Implementing IValidatableObject�� 103

Adding a New Video��� 107

Modifying the Data Access Service�� 109

Modifying the OnPost Method�� 110

Working with TempData��� 111

Changing the TempData Provider��� 115

Chapter 4: �EF Core and SQL Server�� 119

Entity Framework Core�� 119

Install Entity Framework�� 120

Implement DbContext�� 124

Specify Database Connection Strings�� 125

Working with Database Migrations�� 132

Implement a New Data Access Service��� 142

Changing the Data Access Service Registration�� 145

Chapter 5: �Working with Razor Pages��� 149

Using Sections in Your Razor Pages��� 149

Meta Tags and CSS��� 151

Navigation�� 152

@RenderBody��� 152

Footer��� 152

Scripts Applied Across All Pages�� 152

@RenderSection��� 152

Table of Contents

vii

What Are _ViewImports and _ViewStart Files?�� 155

Specifying a Different Layout Page�� 157

Creating a Custom TagHelper��� 161

Working with Partial Views�� 165

Adding Video Properties and Updating the Database��� 167

Adding Markup to the Partial View��� 170

Working with ViewComponents��� 176

Chapter 6: �Adding Client-Side Logic�� 183

Separate Production Scripts from Development Scripts�� 183

Setting Up SCSS and Generating CSS�� 187

SCSS Partial Files��� 199

Using SCSS @mixin�� 201

Using SCSS @extend�� 204

Using SCSS Functions�� 208

Working with Chrome Developer Tools�� 212

Dragging Elements��� 213

Adding and Modifying Styles�� 215

Add a New Class��� 218

Testing State Changes�� 219

Throttling Network Speed��� 221

Wrapping Up�� 223

Chapter 7: �Exploring Middleware�� 225

What Is Middleware��� 225

Handling Exceptions��� 227

UseHsts�� 228

UseHttpsRedirection��� 230

UseStaticFiles��� 230

UseRouting��� 232

UseSession��� 232

UseEndpoints with MapRazorPages��� 233

Table of Contents

viii

Creating Custom Middleware��� 233

Logging Information��� 238

Only Logging What Is Necessary�� 244

Applying a Specific LogLevel to Production��� 247

A Quick Look at the Log Category�� 254

Wrapping Up�� 255

Chapter 8: �Web Application Deployment��� 257

Getting Your Site Ready for Deployment�� 257

Deploying Your Web Application to IIS�� 265

Configuring the SQL Server Database�� 271

A Note About Connection Strings and Secrets��� 283

�Index�� 285

Table of Contents

ix

About the Author

Dirk Strauss is a software developer from South Africa

who has been writing code since 2003. He has extensive

experience in SYSPRO, with C# and web development being

his main focus. He studied at the Nelson Mandela University,

where he wrote software on a part-time basis to gain a better

understanding of the technology. He remains passionate

about writing code and imparting what he learns to others.  

xi

About the Technical Reviewer

Carsten Thomsen is a back-end developer primarily but

working with smaller front-end bits as well. He has authored

and reviewed a number of books and created numerous

Microsoft Learning courses, all to do with software

development. He works as a freelancer/contractor in various

countries in Europe; Azure, Visual Studio, Azure DevOps,

and GitHub are some of the tools he works with. Being an

exceptional troubleshooter, asking the right questions,

including the less logical ones, in a most logical to least

logical fashion, he also enjoys working with architecture,

research, analysis, development, testing, and bug fixing.

Carsten is a very good communicator with great mentoring and team-lead skills, and

great skills in researching and presenting new material. 

xiii

Acknowledgments

I would like to thank my wife and kids for their support during the writing of this book.

I love you always!

xv

Introduction

.NET Core has given .NET developers a lot to think about. Some developers have

embraced the technology, while others have taken a wait-and-see approach. Whatever

approach you are taking, .NET Core is without a doubt here to stay.

Developing web applications is also not one of the easiest things to do. I’ve always

wanted to write a book on developing web applications, but to do it in a way that is very

structured and takes the reader on a journey of discovery.

Creating ASP.NET Core Web Applications is my attempt at that book. I always try to

take the point of view that the book I’m writing is a reference book for my bookshelf.

With this in mind, I, therefore, tried to cover a wide set of topics.

As with all projects, Chapter 1 starts with creating your project and using the .NET

CLI. We have a look at adding Razor pages and also how to configure the application

using the appsettings.json file. I then create a dummy data service, which is used to get

the application up and running with test data. This test data is designed in such a way

that it can easily be swapped out at a later stage (and I show you how to do this).

Chapter 2 takes a look at the process of creating models, model binding, tag helpers,

working with a query string, and page routes. To illustrate these concepts, Chapter 2

shows you how to implement a search form. This allows us to search for data, view the

details, and add in logic to handle bad requests.

Chapter 3 illustrates the concepts of editing the data, displaying validation errors,

and modifying the data access service to suit our needs. I also discuss the differences

between singleton, scoped, and transient lifetime registration for services.

EF Core and SQL Server become the focus in the next chapter. Chapter 4 shows

you how to install Entity Framework Core, define your connection strings, what

database migrations are, and how to use them. We will also be implementing a new

data access service and changing the data access service registration from the test

data to the SQL data.

xvi

Moving to the front end next, we have a look at working with Razor pages in Chapter 5.

Here, we will look at what sections are and how they benefit you as a developer. We take a

closer look at _ViewImports and _ViewStart files. I also show you how to create your own tag

helper, how to work with partial views, and, finally, how to work with ViewComponents.

Staying front end, we have a look at adding client-side logic in Chapter 6. I show

you how to separate production scripts from development scripts, use SCSS to generate

CSS, how SCSS works, and the different features you can use to create CSS with SCSS, as

well as work with Chrome Developer Tools. This is, in my opinion, crucial for any web

developer to know.

With Chapter 7, we will take a look at what middleware is. This is a very important

chapter and one that will require some explaining. We have a look at some of the built-

in middleware components, but also how to create a custom middleware component

if the built-in middleware components don’t suit your needs. After creating a custom

middleware component, we will have a look at logging in ASP.NET Core. Logging is a big

subject, but this book tries to cover the basics.

Finally, Chapter 8 will take you through getting your web application ready for

deployment and finally publishing your web application and hooking it up to a SQL

Server database. I hope that you will enjoy this book as much as I enjoyed writing it.

Introduction

1
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5_1

CHAPTER 1

Creating and Setting
Up Your Project
Welcome to Creating ASP.NET Core Web Applications! This book will guide you through

creating a typical ASP.NET Core Web Application, from start to finish. All the code

illustrated in this book is available on GitHub and will be an invaluable resource to you

as you navigate the code samples in the book.

This chapter will take you through the steps required to start your web application

development. We will also have a look at adding and editing Razor pages, working with

Entities, creating and registering a data service, and using that data service to display test

data on the web page.

�Creating Your Web Application Project
In this book, I will be using Visual Studio 2019 to illustrate the concepts surrounding

ASP.NET Core Web Applications. For those folks that do not use Visual Studio, the same

result as detailed in the following can be achieved for creating an application by using

the .NET CLI.

I will assume that you have already installed .NET Core onto your machine. The
web application we will be creating will use .NET Core 3.1. If you have not installed
.NET Core, you can do so by visiting this link: https://dotnet.microsoft.
com/download.

Because we are working with .NET Core which is cross-platform, I will also show you

how to create an application using the Command Prompt later in this section.

https://doi.org/10.1007/978-1-4842-6828-5_1#DOI
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

2

For now, let us start by creating a new project in Visual Studio. From the file menu,

click New Project. This will display the Create a new project screen as seen in Figure 1-1.

The Create a new project screen that allows you to select the correct project template

lists all the available templates included in Visual Studio. In our case, we will be using

the ASP.NET Core Web Application template.

If you are used to working in previous versions of Visual Studio, you will notice that

this screen has been vastly improved. You can search for templates by typing a template

name into the search text box or by holding down Alt+S.

You can also filter project templates from the drop-downs on the form. You will

notice that you can filter by language, platform, and project type.

Clicking the Next button will take you to the Configure your new project screen as

seen in Figure 1-2.

Figure 1-1.  The Create New Project Screen

Chapter 1 Creating and Setting Up Your Project

3

Give the project a suitable name. For this book, we will simply call the project

VideoStore and specify a location to create the project in. When you have done this, click

the Create button.

You will now be taken to a second screen as seen in Figure 1-3 where you can select

the specific type of template that you want to use.

Figure 1-2.  Configure Your New Project

Chapter 1 Creating and Setting Up Your Project

4

It is here that we can specify the version of .NET Core that we want to use. In this

example, we are selecting .NET Core 3.1. We can then tell Visual Studio that we want to

create a basic web application. Just leave the rest of the settings at their default values

and click the Create button.

Figure 1-3.  Selecting a Specific Template Type

Chapter 1 Creating and Setting Up Your Project

5

After the project has been created in Visual Studio, you can hit Ctrl+F5 to run the

web application. This will run your project without the debugger attached and display

the web application in your browser as seen in Figure 1-4.

You will notice that the web application is running on port 44398 in this example,

but your port will most likely be different. By default, this web application includes some

basic features such as a Home page as well as a Privacy page.

It is from here that we will start to flesh out our web application and add more

features and functionality to it.

�Using the .NET CLI
Earlier in this chapter, I mentioned that we can also create the project from the

Command Prompt. Therefore, for those of you that do not use Visual Studio, the .NET

CLI offers a cross-platform way for creating .NET Core projects.

Figure 1-4.  Running the Web Application

Chapter 1 Creating and Setting Up Your Project

6

Once you have installed .NET Core on your Mac, Linux, or Windows machine, you

should be able to simply open your Terminal, Shell, or Command Prompt and type the

dotnet command as seen in Figure 1-5.

To see more of the commands available with dotnet, you can type dotnet -h in the

Command Prompt. If you typed in dotnet new, you would see all the available project

templates listed in your Command Prompt window.

These templates, along with the short name associated with that specific template,

are listed in the following table.

Templates Short Name Language Tags

Console Application Console C#, F#, VB Common/

Console

Class library classlib C#, F#, VB Common/

Library

WPF Application wpf C# Common/WPF

WPF Class library wpflib C# Common/WPF

Figure 1-5.  Running the dotnet Command

(continued)

Chapter 1 Creating and Setting Up Your Project

7

Templates Short Name Language Tags

WPF Custom Control Library wpfcustomcontrollib C# Common/WPF

WPF User Control Library wpfusercontrollib C# Common/WPF

Windows Forms (WinForms) Application winforms C# Common/

WinForms

Windows Forms (WinForms) Class library winformslib C# Common/

WinForms

Worker Service worker C# Common/

Worker/Web

Unit Test Project mstest C#, F#, VB Test/MSTest

NUnit 3 Test Project nunit C#, F#, VB Test/NUnit

NUnit 3 Test Item nunit-test C#, F#, VB Test/NUnit

xUnit Test Project xunit C#, F#, VB Test/xUnit

Razor Component razorcomponent C# Web/ASP.NET

Razor Page page C# Web/ASP.NET

MVC ViewImports viewimports C# Web/ASP.NET

MVC ViewStart viewstart C# Web/ASP.NET

Blazor Server App blazorserver C# Web/Blazor

Blazor WebAssembly App blazorwasm C# Web/Blazor/

WebAssembly

ASP.NET Core Empty web C#, F# Web/Empty

ASP.NET Core Web App (Model-View-

Controller)

mvc C#, F# Web/MVC

ASP.NET Core Web App webapp C# Web/MVC/

Razor Pages

ASP.NET Core with Angular angular C# Web/MVC/SPA

ASP.NET Core with React.js React C# Web/MVC/SPA

ASP.NET Core with React.js and Redux Reactredux C# Web/MVC/SPA

(continued)

Chapter 1 Creating and Setting Up Your Project

8

Templates Short Name Language Tags

Razor Class Library Razorclasslib C# Web/Razor/

Library/

Razor Class Library

ASP.NET Core Web API Webapi C#, F# Web/WebAPI

ASP.NET Core gRPC Service Grpc C# Web/gRPC

dotnet gitignore file gitignore Config

global.json file globaljson Config

NuGet Config nugetconfig Config

Dotnet local tool manifest file tool-manifest Config

Web Config webconfig Config

Solution File sln Solution

You will notice that to create an ASP.NET Web Application, we need to specify the

short name webapp with the new command.

As seen in Figure 1-6, typing in the command dotnet new webapp will create the

ASP.NET Web Application inside the current directory.

Figure 1-6.  Creating the Web App via the .NET CLI

Chapter 1 Creating and Setting Up Your Project

9

If you had to compare the project created via the .NET CLI with the one created in

Visual Studio, you will see that these are identical.

The .NET CLI offers a fantastic, quick, and cross-platform way of creating

applications.

�Adding and Editing Razor Pages
With your web application running, you will notice that if you click the Privacy link in the

navigation menu, it will go to the following URL: https://localhost:44398/Privacy.

The web application is mapping the request created by clicking the Privacy link with

the Razor pages in your VideoStore project. Looking at Figure 1-7, you will see the Razor

pages in a folder called… you guessed it, Pages.

This means that when I view the Privacy page in the web application, ASP.NET Core

is busy rendering the Privacy.cshtml page. You will also notice that the cshtml extension

is not required in the URL as seen in Figure 1-8.

Figure 1-7.  The Razor Pages in the Solution Explorer

Chapter 1 Creating and Setting Up Your Project

10

You will also notice that when you make your browser window smaller, the menu

collapses into the hamburger icon. This is made possible by Bootstrap, which is included

in the project by default.

If you now click your Privacy.cshtml page in the Solution Explorer, you will see the

code as listed in Code Listing 1-1.

Listing 1-1.  The Privacy Razor Page

@page

@model PrivacyModel

@{

 ViewData["Title"] = "Privacy Policy";

}

<h1>@ViewData["Title"]</h1>

<p>Use this page to detail your site's privacy policy.</p>

With your web application running without the debugger attached, if you click the

hamburger menu icon, you will see that we have just two pages listed which are Home

and Privacy.

Figure 1-8.  The Privacy Policy Page

Chapter 1 Creating and Setting Up Your Project

11

Looking at Figure 1-9 and comparing that to the code in Code Listing 1-1, you might

be wondering where the code is for the navigation.

The answer lies in a special Razor page called a Layout page. Swing back to your

Solution Explorer, and expand the Shared folder under the Pages folder. There you will

see a page called _Layout.cshtml as seen in Figure 1-10.

Figure 1-9.  The Navigation Menu

Chapter 1 Creating and Setting Up Your Project

12

It is this Layout page that renders everything within the web application's <head>

tags, things such as links to all the required stylesheets, as well as <body> tags that

include a <header> section containing the navigation menu. The code for the navigation

menu is listed in Code Listing 1-2.

Listing 1-2.  The Navigation Menu Code

<div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">

 <ul class="navbar-nav flex-grow-1">

 �<li class="nav-item"><a class="nav-link text-dark" asp-area="" asp-

page="/Index">Home

 �<li class="nav-item"><a class="nav-link text-dark" asp-area="" asp-

page="/Privacy">Privacy

</div>

Figure 1-10.  The Shared Layout Page

Chapter 1 Creating and Setting Up Your Project

13

Go ahead and add another menu item called Videos, by adding a new list item to the

unordered list as seen in Code Listing 1-3.

Listing 1-3.  Modified Navigation Menu Code

<div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">

 <ul class="navbar-nav flex-grow-1">

 �<li class="nav-item"><a class="nav-link text-dark" asp-area="" asp-

page="/Index">Home

 �<li class="nav-item"><a class="nav-link text-dark" asp-area="" asp-

page="/ Videos/List">Videos

 �<li class="nav-item"><a class="nav-link text-dark" asp-area="" asp-

page="/Privacy">Privacy

</div>

You will notice that the asp-page tag helper specifies Videos/List which tells my

web application that inside a folder called Videos is a page that will display a list of

videos. Running your web application again, you will see that the Videos menu item has

been added to the navigation menu (Figure 1-11).

Chapter 1 Creating and Setting Up Your Project

14

If you click the Videos menu item, the link will not navigate anywhere. This is

because we have not yet added the required Razor page. As shown in Figure 1-12, add a

new folder under the Pages folder in your Solution Explorer.

Figure 1-11.  Navigation Menu Modified

Chapter 1 Creating and Setting Up Your Project

15

Next, right-click the Videos folder, and add a new Razor page called List to the

folder. This can be done from the context menu or from the Add New Item screen as

shown in Figure 1-13.

Figure 1-12.  Adding the Videos Folder

Chapter 1 Creating and Setting Up Your Project

16

Once the List.cshtml page has been added, you will notice that Visual Studio has

added a second page (Figure 1-14) called List.cshtml.cs. The List.cshtml file is

essentially my Razor page containing the @page directive (Code Listing 1-4).

Listing 1-4.  Razor Page Code

@page

@model VideoStore.Pages.Videos.ListModel

@{

}

Furthermore, the Razor page also specifies a model with the @model directive. It

is telling .NET Core that the model that contains video information is contained in an

object of type ListModel.

Figure 1-13.  Adding a New Razor Page

Chapter 1 Creating and Setting Up Your Project

17

This ListModel is the class contained in the List.cshtml.cs file nested under the

List.cshtml page. Looking at the code listing in Listing 1-5, it is interesting to notice that

the ListModel class inherits from an abstract class called PageModel.

Figure 1-14.  List Page Added

Chapter 1 Creating and Setting Up Your Project

18

Listing 1-5.  The ListModel Class

namespace VideoStore.Pages.Videos

{

 public class ListModel : PageModel

 {

 public void OnGet()

 {

 }

 }

}

Swinging back to the Razor page, go ahead and add a header tag to give the page a

heading called Videos (Listing 1-6).

Listing 1-6.  The Modified Videos Razor Page

@page

@model VideoStore.Pages.Videos.ListModel

@{

}

<h1>Videos</h1>

Running your Web App and clicking the Videos navigation menu item, you will be

taken to the Video List page as defined in the asp-page tag helper earlier.

Chapter 1 Creating and Setting Up Your Project

19

Figure 1-15.  Videos List Page

Referring to Figure 1-15, you will notice that the browser is displaying the Videos/List

URL.

�Looking at the Configuration
Inside your VideoStore project, you will notice a file (Figure 1-16) called appsettings.

json. This is your application's configuration file and can easily be referenced from

within your Razor page.

Chapter 1 Creating and Setting Up Your Project

20

The appsettings.json is one of the sources of configuration in your application. This

means that anything I add to this file can be used when your web application runs.

Listing 1-7.  The appsettings.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

Figure 1-16.  The appsettings.json Configuration File

Chapter 1 Creating and Setting Up Your Project

21

 },

 "AllowedHosts": "*"

}

Opening up the file (Code Listing 1-7), you will see that it contains JSON, and I can

easily add additional settings here.

Listing 1-8.  Modified appsettings.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "VideoListPageTitle": "Video Store - Videos List"

}

Modify the appsettings.json file by adding a VideoListPageTitle property

with a value of Video Store - Videos List as seen in Listing 1-8. To display the

VideoListPageTitle property on my Razor page, I need to modify my ListModel class.

Razor pages are only concerned with displaying data. It is the responsibility of the
ListModel class to fetch the data required to display on the Razor page.

If you look back at Code Listing 1-5, you will notice that the ListModel class specifies

a public void OnGet() method. It is this method that will respond to HTTP GET

requests, and it is here that we will modify the code slightly to get the data for the page

title from our configuration file.

To get the setting in the configuration file, we need to expose this configuration file to

our ListModel class by passing a parameter of type IConfiguration into the ListModel

constructor. Go ahead and modify your ListModel class as seen in Code Listing 1-9.

Chapter 1 Creating and Setting Up Your Project

22

Listing 1-9.  The Modified ListModel Class

public class ListModel : PageModel

{

 private readonly IConfiguration _config;

 public string PageTitle { get; set; }

 public ListModel(IConfiguration config)

 {

 _config = config;

 }

 public void OnGet()

 {

 PageTitle = _config["VideoListPageTitle"];

 }

}

You will notice that I have added a constructor that takes a parameter of type

IConfiguration, a private field called _config, as well as a property called PageTitle.

You might need to bring in the Microsoft.Extensions.Configuration namespace in
your using statements to reference IConfiguration.

Then, in the OnGet method, I can get the value stored in the configuration file simply

by referencing the property, VideoListPageTitle added to the configuration file earlier

in Code Listing 1-8.

Because my ListModel class exposes the PageTitle property, which is being set in

the OnGet method, I can easily grab this value on my Razor page by using @Model (notice

the upper case M).

Chapter 1 Creating and Setting Up Your Project

23

Listing 1-10.  Displaying the PageTitle on the Razor Page

@page

@model VideoStore.Pages.Videos.ListModel

@{

}

<h1>@Model.PageTitle</h1>

As seen in Code Listing 1-10, when I dot after typing @Model, I will see the PageTitle

property displayed in Visual Studio's IntelliSense.

Running the web application and navigating to the Videos page, you will see the page

title displayed that we set in the configuration file (Figure 1-17).

�Working with Entities
To explain the concept of Entities, we need to understand what an Entity is. Our Videos/

List page has now been created and will be used to display a list of videos, but we need

a way to define exactly what a Video is. This is essentially what the job of the Entity is.

Figure 1-17.  The Videos List Page Title Displayed

Chapter 1 Creating and Setting Up Your Project

24

To separate the different application concerns in our web application, go ahead and

add a new project to the solution by right-clicking the solution and selecting Add, New

Project from the context menu.

You will then see the Add a new project window pop up (Figure 1-18). From the list

of project templates, select a .NET Core Class Library, and click the Next button.

Figure 1-18.  Add a New Project

Chapter 1 Creating and Setting Up Your Project

25

Call the project VideoStore.Core, and click the Create button (Figure 1-19). It is this

project that will contain the classes that represent the core of our VideoStore application.

Therefore, this project will contain such things as the Entities we will need to use.

Figure 1-19.  Adding a .NET Core Class Library

Chapter 1 Creating and Setting Up Your Project

26

After adding this project, you will notice in Figure 1-20 that the class name defaults

to Class1.cs. Because our project is concerned with Videos, we will rename this class to

Video.cs (singular) as seen in Listing 1-11.

Listing 1-11.  The Video Class

namespace VideoStore.Core

{

 public class Video

 {

 }

}

We now have an entity that will define exactly what a Video looks like. Let's add

some properties to the Video class to define what it looks like. These can be seen in Code

Listing 1-12.

Figure 1-20.  The VideoStore.Core Project

Chapter 1 Creating and Setting Up Your Project

27

You can add as many properties as you like, but to keep things simple, I will just add

a basic set of properties to define our Video class.

Listing 1-12.  The Video Class Properties

namespace VideoStore.Core

{

 public class Video

 {

 public int Id { get; set; }

 public string Title { get; set; }

 public DateTime ReleaseDate { get; set; }

 }

}

There is one more file that I will want to add to define the different movie genres.

This file will be called MovieGenre.cs and will contain an enum as illustrated in Code

Listing 1-13.

Listing 1-13.  The MovieGenre enum

namespace VideoStore.Core

{

 public enum MovieGenre

 {

 None,

 Action,

 Romance,

 Drama,

 Horror

 }

}

Your solution should now look as illustrated in Figure 1-21.

Chapter 1 Creating and Setting Up Your Project

28

We now want to reference the MovieGenre enum in the Video class. Do this by adding

a property of type MovieGenre as illustrated in Code Listing 1-14.

Listing 1-14.  The Video Entity with a Property of Type MovieGenre

namespace VideoStore.Core

{

 public class Video

 {

 public int Id { get; set; }

 public string Title { get; set; }

 public DateTime ReleaseDate { get; set; }

 public MovieGenre Genre { get; set; }

 }

}

Figure 1-21.  The VideoStore.Core Project

Chapter 1 Creating and Setting Up Your Project

29

This Video class or Entity now represents the Video data that we will be using inside

our web application. It completely defines what a Video should look like.

�Creating and Registering a Data Service
We now want to set up the code required to display the data of our videos on the web

page. To do this, we will be creating a data service, but at this point, I don't want to go

through all the steps to add SQL to the project (not yet anyway).

For now, we will just be adding code to display test data, and, by doing so, allow us to

get all the other bits of code created for our web application. This test data will be created

in such a way that it will allow us to easily swap out the test data for real data later on

when all the sections of the web application have been completed.

It is here that you will see how Interfaces allow us to accomplish this. As before, to

separate concerns inside our application, we will add another .NET Core Class Library

project to our solution called VideoStore.Data and rename the default Class1.cs file to

TestData.cs as seen in Figure 1-22.

Chapter 1 Creating and Setting Up Your Project

30

Next, add an Interface to your VideoStore.Data project by right-clicking your project

and selecting Add, New Item from the context menu.

Figure 1-22.  The VideoStore.Data Project

Chapter 1 Creating and Setting Up Your Project

31

Our IVideoData Interface will tell our web application what methods need to be

implemented in our data service (Figure 1-23). It is up to the TestData class to provide

the implementation of the Interface, and this allows us to separate the TestData with

actual data later on.

Open the IVideoData Interface, and add a method (Listing 1-15) that will return a

list of videos to our page. It is important to note that the Interface does not tell us how to

do something, but merely what to do. It will be up to the class (in this case the TestData

class) that implements the Interface to determine exactly how the data is returned.

Figure 1-23.  The VideoStore.Data Project with the IVideoData Interface

Chapter 1 Creating and Setting Up Your Project

32

Listing 1-15.  The IVideoData Interface

namespace VideoStore.Data

{

 public interface IVideoData

 {

 IEnumerable<Video> ListVideos();

 }

}

Swing over to the TestData class, and implement the IVideoData Interface by adding

the Interface name after the class name. After implementing the Interface as follows,

public class TestData : IVideoData, notice how Visual Studio prompts you to

implement the Interface methods with a red squiggly line.

You will have to add a reference to the VideoStore.Core project to reference the
Video entity.

As mentioned earlier, the TestData class will only contain test data to allow us to

create our web application. For this reason, I will add some hardcoded data to simulate

the videos in our web application. Refer to Code Listing 1-16 to see the complete

implementation of the IVideoData Interface.

Listing 1-16.  The TestData Class that Implements IVideoData

namespace VideoStore.Data

{

 public class TestData : IVideoData

 {

 List<Video> _videoList;

 public TestData()

 {

 _videoList = new List<Video>()

Chapter 1 Creating and Setting Up Your Project

33

 {

 �new Video { Id = 1, Title = "Movie Title 1", ReleaseDate =

new DateTime(2018, 1, 21), Genre = MovieGenre.Action },

 �new Video { Id = 2, Title = "Movie Title 2", ReleaseDate =

new DateTime(2019, 7, 2), Genre = MovieGenre.Drama },

 �new Video { Id = 3, Title = "Movie Title 3", ReleaseDate =

new DateTime(2020, 2, 14), Genre = MovieGenre.Romance }

 };

 }

 �public IEnumerable<Video> ListVideos() => _videoList.OrderBy(x =>

x.Title);

 }

}

The next order of business is to display this data inside of our Razor page. It is

now that I will be referencing the Interface instead of referencing the data directly.

Referencing the Interface will allow me to swap out the data source later on when I am

ready to work with a SQL Server database.

To get started with this, we need to open the Startup.cs file in the VideoStore

project and look for a method called ConfigureServices (Listing 1-17). ASP.Net Core

uses this method to determine all the services that your web application will need. It is

here that I can notify my web application about my IVideoData Interface and tell it that

whenever I want an object of IVideoData, it should provide me with my TestData.

Listing 1-17.  The ConfigureServices Method

public void ConfigureServices(IServiceCollection services)

{

 _ = services.AddRazorPages();

}

To do this, I need to modify the ConfigureServices method and tell the services

collection that whenever a page or component in my web application needs IVideoData,

give it the TestData class.

Chapter 1 Creating and Setting Up Your Project

34

You will need to add a reference to the VideoStore.Data project. Also note the
use of the discard in Listing 1-17. The underscore is used to denote a discard
when your method returns a value, but you do not intend using that value. In
Listing 1-17, AddRazorPages returns an IMvcBuilder, but I am not using that to
further configure the MVC services.

To do this, I add a scoped instance of my TestData service by modifying the code

as illustrated in Code Listing 1-18. As a side note, the ConfigureServices method is

used to register the services required by the app. ASP.NET Core then uses the built-in

dependency injection framework to make these services available throughout your

web application. To read up more about dependency injection in ASP.NET Core, have

a look at the following link: https://docs.microsoft.com/en-us/aspnet/core/

fundamentals/dependency-injection.

Listing 1-18.  Modified ConfigureServices Method

public void ConfigureServices(IServiceCollection services)

{

 _ = services.AddScoped<IVideoData, TestData>();

 _ = services.AddRazorPages();

}

Now that I have my service registered, I can inject that into my ListModel class by

modifying the constructor. Let's see how to do that next.

�Displaying Test Data on Your Web Page
To consume the data service in my ListModel class, I can use dependency injection

to inject my service in the constructor. You will recall that we previously injected the

IConfiguration service when we were pulling values from the appsettings.json file.

Start by adding a reference to the VideoStore.Data project in the List.cshtml.cs

file. Next, inject the IVideoData service in the constructor, and pass that off to a private

field called _videoData. Your code should look as illustrated in Code Listing 1-19.

Chapter 1 Creating and Setting Up Your Project

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection

35

Listing 1-19.  Modified ListModel Class

namespace VideoStore.Pages.Videos

{

 public class ListModel : PageModel

 {

 private readonly IConfiguration _config;

 private readonly IVideoData _videoData;

 public string PageTitle { get; set; }

 public ListModel(IConfiguration config, IVideoData videoData)

 {

 _config = config;

 _videoData = videoData;

 }

 public void OnGet()

 {

 PageTitle = _config["VideoListPageTitle"];

 }

 }

}

The ListModel class can now use the services we have injected to build up the data

required to display on the Razor page. My Razor page can then use the public properties

on the ListModel to pull that data and render it on the web page (the same way we

exposed the PageTitle from the appsettings.json file).

The last two steps we need to complete on the ListModel are to add a public

property to expose the video data to the Razor page and code to set that property in the

OnGet method.

Go ahead and modify your ListModel class as illustrated in Code Listing 1-20. I have

purposefully added the complete code file here so that you can see the using statements

to the VideoStore.Core and VideoStore.Data projects.

Chapter 1 Creating and Setting Up Your Project

36

Listing 1-20.  Exposing the Video Data via a Property

using Microsoft.AspNetCore.Mvc.RazorPages;

using Microsoft.Extensions.Configuration;

using System.Collections.Generic;

using VideoStore.Core;

using VideoStore.Data;

namespace VideoStore.Pages.Videos

{

 public class ListModel : PageModel

 {

 private readonly IConfiguration _config;

 private readonly IVideoData _videoData;

 public string PageTitle { get; set; }

 public IEnumerable<Video> Videos { get; set; }

 public ListModel(IConfiguration config, IVideoData videoData)

 {

 _config = config;

 _videoData = videoData;

 }

 public void OnGet()

 {

 PageTitle = _config["VideoListPageTitle"];

 Videos = _videoData.ListVideos();

 }

 }

}

All that is left for us to do is to modify our Razor page to display the list of Videos on

the web page. The great thing about Razor pages is that I can mix markup with C# and

use it to loop collections, for example. All that I need to do is use the @ sign to switch

between regular HTML markup and C#.

The code illustrated in Code Listing 1-21 uses a C# foreach statement to loop

through the collection of videos in my test data source and output that on the Razor

page.

Chapter 1 Creating and Setting Up Your Project

37

Listing 1-21.  The Razor Page Markup and C#

@page

@model VideoStore.Pages.Videos.ListModel

@{

}

<h1>@Model.PageTitle</h1>

<div class="container-fluid">

 <div class="row">

 <div class="col-md-4">

 Title

 </div>

 <div class="col-md-4">

 Release Date

 </div>

 <div class="col-md-4">

 Genre

 </div>

 </div>

 @foreach (var video in Model.Videos)

 {

 <div class="row">

 <div class="col-md-4">

 @video.Title

 </div>

 <div class="col-md-4">

 @video.ReleaseDate.ToShortDateString()

 </div>

 <div class="col-md-4">

 @video.Genre

 </div>

 </div>

 }

</div>

Chapter 1 Creating and Setting Up Your Project

38

When I save all my work and run the web application, I will now see all the test data

displayed on my web page (Figure 1-24).

For now, this is perfect. I can continue to use this test data while I continue to

develop my web application. When everything is completed, I can just swap out the data

service via the IVideoData abstraction and switch from my test data to actual SQL data.

Figure 1-24.  The Test Data Displayed on the Videos List Page

Chapter 1 Creating and Setting Up Your Project

39
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5_2

CHAPTER 2

Creating Models
In the previous chapter, we created logic to pull test data to our Video List form. That test

data contained only three entries. Being test data, there is little need to add in a large

volume of test data, not unless you want to test the responsiveness or speed of your page.

One thing that is therefore quite important is to add searching capabilities to our

Video List form. This will allow the user to filter the list by some or other specific search

queries.

�Building a Search Form
I will be using Font Awesome icons in this application, so make sure that you have these

set up. If you haven’t set up Font Awesome, or want to use a different icon set, feel free to

do so (this means you can skip the next section). For those that want to make use of Font

Awesome, or haven’t included an icon set in your application, let’s see how to do that next.

�Adding Font Awesome
The quickest way to add Font Awesome icons to your application is to use the CDN

embed code. Point your browser to https://fontawesome.com/start and generate a

Font Awesome Kit using your email address.

When you receive the confirmation email, verify your account, and then you will be

taken to your kit code. The kit code will look similar to the code in Code Listing 2-1.

Listing 2-1.  The Font Awesome Kit Code

<script src="https://kit.fontawesome.com/fec344983.js"

crossorigin="anonymous"></script>

Copy this script tag, and add it to the end of your scripts section, just above the

@RenderSection in the _Layout.cshtml file.

https://doi.org/10.1007/978-1-4842-6828-5_2#DOI
https://fontawesome.com/start

40

After adding this to the scripts section, your _Layout.cshtml page should look as in

Code Listing 2-2.

Listing 2-2.  Adding the Kit Code to Your Scripts Section

<footer class="border-top footer text-muted">

 <div class="container">

 © 2020 - VideoStore - <a asp-area="" asp-page="/Privacy">Privacy

 </div>

</footer>

<script src="~/lib/jquery/dist/jquery.min.js"></script>

<script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>

<script src="~/js/site.js" asp-append-version="true"></script>

<script src="https://kit.fontawesome.com/fec344983.js"

crossorigin="anonymous"></script>

@RenderSection("Scripts", required: false)

This is all you need to do to make use of Font Awesome icons in your web

application.

�Adding the Search Form Code
Open the List.cshtml page, and have a look at the HTML markup contained therein. You

will remember from Chapter 1 that it is here that we added the C# code mixed in with the

markup to produce a grid layout of the videos contained in our test data.

Because this page lists all the videos in our Video Store, it makes sense to add the

search functionality to this page. The code that we will be adding looks as illustrated in

Code Listing 2-3.

Listing 2-3.  The Search Form Code

<form method="get">

 <div class="form-group">

 <div class="input-group">

 <input type="search" class="form-control" value="" />

 <button class="btn btn-group">

Chapter 2 Creating Models

41

 <i class="fas fa-search"></i>

 </button>

 </div>

 </div>

</form>

Let’s have a closer look at this code and expand a bit on what exactly we are doing

here. In its most basic version, the search form is defined by adding <form></form>

element to your web page. The form will send an HTTP GET request to the same page

that rendered the search form. You can control this behavior by adding additional

information to the <form> element. If you want to change the destination, you can add

an action attribute to the <form> element. Seeing as we want to remain on this page, we

can omit the action attribute.

You will also notice that we are adding a method attribute to this form. This tells the

page that we are doing a GET request, and this will always be true when we are searching.

If we wanted to modify data, we would use method="post" on the form, but this is not

something we would ever want to do in a search form. After adding your <form> markup

to your List.cshtml page, the markup should look as illustrated in Code Listing 2-4.

Listing 2-4.  Adding the Form to the List.cshtml Page

@page

@model VideoStore.Pages.Videos.ListModel

@{

}

<h1>@Model.PageTitle</h1>

<form method="get">

 <div class="form-group">

 <div class="input-group">

 <input type="search" class="form-control" value="" />

 <button class="btn btn-group">

 <i class="fas fa-search"></i>

 </button>

 </div>

 </div>

</form>

Chapter 2 Creating Models

42

<div class="container-fluid">

 <div class="row">

 <div class="col-md-4">

 Title

 </div>

 <div class="col-md-4">

 Release Date

 </div>

 <div class="col-md-4">

 Genre

 </div>

 </div>

 @foreach (var video in Model.Videos)

 {

 <div class="row">

 <div class="col-md-4">

 @video.Title

 </div>

 <div class="col-md-4">

 @video.ReleaseDate.ToShortDateString()

 </div>

 <div class="col-md-4">

 @video.Genre

 </div>

 </div>

 }

</div>

Running your web application, you will see that the search form (Figure 2-1) is

rendered above the movie list and that the Font Awesome icon is displayed next to the

text input.

Chapter 2 Creating Models

43

The next task that we need to do is to add in logic to find videos based on a search

term that we enter into the text input. Let’s start on that next.

�Implementing the Find Logic
For us to implement a search term on the find input, we need to modify our data service

slightly. We want to pass the data service a string value for the title that the user of the

web page wants to search for. This means that we need to start with the IVideoData

Interface.

We want to tell that whatever data service implements this Interface, it should allow

for the passing of a string value in the ListVideos method as seen in Code Listing 2-5.

Figure 2-1.  The Search Form

Chapter 2 Creating Models

44

Listing 2-5.  The Modified IVideoData Interface

namespace VideoStore.Data

{

 public interface IVideoData

 {

 IEnumerable<Video> ListVideos(string title);

 }

}

If we modify the Interface, we need to apply that change to the classes that

implement that Interface. Swing over to the TestData class, and change the ListVideos

method as illustrated in Code Listing 2-6.

Listing 2-6.  The Modified TestData Method

public IEnumerable<Video> ListVideos(string title = null) => _videoList

 .Where(x => string.IsNullOrEmpty(title)

 || x.Title.StartsWith(title))

 .OrderBy(x => x.Title);

You can see that the title parameter has been made optional. This means that we

need to cater for a null string value in the Where clause. I have also added more suitable

movie names to our test data. With that, the complete TestData class now looks as

illustrated in Code Listing 2-7.

Listing 2-7.  The TestData Class

namespace VideoStore.Data

{

 public class TestData : IVideoData

 {

 List<Video> _videoList;

 public TestData()

 {

 _videoList = new List<Video>()

 {

Chapter 2 Creating Models

45

 �new Video { Id = 1, Title = "Sound of the Seven Seas",

ReleaseDate = new DateTime(2018, 1, 21), Genre =

MovieGenre.Action },

 �new Video { Id = 2, Title = "A Day in the Sun", ReleaseDate

= new DateTime(2019, 7, 2), Genre = MovieGenre.Drama },

 �new Video { Id = 3, Title = "Wonders of the Universe",

ReleaseDate = new DateTime(2020, 2, 14), Genre =

MovieGenre.Romance }

 };

 }

 �public IEnumerable<Video> ListVideos(string title = null) => _videoList

 .Where(x => string.IsNullOrEmpty(title)

 || x.Title.StartsWith(title))

 .OrderBy(x => x.Title);

 }

}

The last bit we need to do to hook it all up is to tell the search form about this search

query that might be entered into the search form. We do this via the name attribute on the

input element. So swing back to the List.cshtml file, and modify the <form> element as

illustrated in Code Listing 2-8.

Listing 2-8.  The Modified Search Form

<form method="get">

 <div class="form-group">

 <div class="input-group">

 <input type="search"

 class="form-control"

 value=""

 name="searchQuery"/>

 <button class="btn btn-group">

 <i class="fas fa-search"></i>

 </button>

 </div>

 </div>

</form>

Chapter 2 Creating Models

46

You will notice that I have added name="searchQuery" to the input element. The last

section of code that we need to modify is the OnGet method of the List.cshtml.cs file as

illustrated in Code Listing 2-9.

Listing 2-9.  Modified OnGet Method

public void OnGet(string searchQuery)

{

 PageTitle = _config["VideoListPageTitle"];

 Videos = _videoData.ListVideos(searchQuery);

}

It is interesting to note that the string parameter name, passed to the OnGet method,

must match the value in the name attribute of the input element in Code Listing 2-8.

This means that if I specify name="searchQuery" in the search form, I then also need to

specify public void OnGet(string searchQuery) in the cs file.

Through something we call model binding, ASP.NET Core will have a look at the

parameter name in the OnGet method. It will then go out and try to find something

named (in our case) searchQuery in the posted form values, in the query string as well

as in the HTTP headers. It then passes this value through to our _videoData.ListVideos

data service method. If it doesn’t find a value for searchQuery, ASP.NET Core will simply

pass through a null.

�Using Model Binding and Tag Helpers
Let’s have a look at how model binding can help us with making the code a bit easier to

work with. Whenever the OnGet method is called, it is as a result of the user clicking the

link to the page. The page simply does an HTTP GET request.

When the user provides a search query (refer to Listing 2-10), this is considered an

input model because it’s a value that the user is providing to the page. One can therefore

safely say that the properties for PageTitle and Videos are considered output models.

Chapter 2 Creating Models

47

Listing 2-10.  The List.cshtml.cs Page

public class ListModel : PageModel

{

 private readonly IConfiguration _config;

 private readonly IVideoData _videoData;

 public string PageTitle { get; set; }

 public IEnumerable<Video> Videos { get; set; }

 public ListModel(IConfiguration config, IVideoData videoData)

 {

 _config = config;

 _videoData = videoData;

 }

 public void OnGet(string searchQuery)

 {

 PageTitle = _config["VideoListPageTitle"];

 Videos = _videoData.ListVideos(searchQuery);

 }

}

The output models allow me to bind to the returned data, in, for example, a foreach

loop as seen in Code Listing 2-4. Taking a closer look at the markup for the form

(Listing 2-11), you will notice that the value property is empty.

Listing 2-11.  The Search Form Markup

<form method="get">

 <div class="form-group">

 <div class="input-group">

 <input type="search"

 class="form-control"

 value=""

 name="searchQuery"/>

 <button class="btn btn-group">

 <i class="fas fa-search"></i>

 </button>

Chapter 2 Creating Models

48

 </div>

 </div>

</form>

What this means is that whenever the user types in a search query (Figure 2-2), the

text input will be cleared because the value property is not set. Model binding can help

us here.

What if I could have a property on the page that acts as an input and an output

model? Something that will accept data as well as display data to the page. As it turns

out, there is a special attribute you can use to control this. We will need to change the

code for our Video List page slightly. These are the changes that we need to make:

•	 Add a using statement for Microsoft.AspNetCore.Mvc.

•	 Create a property called SearchQuery, and add an attribute called

BindProperty with the BinderType parameter of SupportsGet set to

true.

•	 Change the OnGet method and remove the searchQuery parameter and

pass the SearchQuery property through, instead, to the data service.

Figure 2-2.  Videos Returned from Search Term

Chapter 2 Creating Models

49

The code for the Video List page will now look as in Code Listing 2-12.

Listing 2-12.  The Modified List.cshtml.cs Page

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using Microsoft.Extensions.Configuration;

using System.Collections.Generic;

using VideoStore.Core;

using VideoStore.Data;

namespace VideoStore.Pages.Videos

{

 public class ListModel : PageModel

 {

 private readonly IConfiguration _config;

 private readonly IVideoData _videoData;

 public string PageTitle { get; set; }

 public IEnumerable<Video> Videos { get; set; }

 [BindProperty(SupportsGet = true)]

 public string SearchQuery { get; set; }

 public ListModel(IConfiguration config, IVideoData videoData)

 {

 _config = config;

 _videoData = videoData;

 }

 public void OnGet()

 {

 PageTitle = _config["VideoListPageTitle"];

 Videos = _videoData.ListVideos(SearchQuery);

 }

 }

}

Chapter 2 Creating Models

50

Looking at the SearchQuery property, you will notice the attribute called

BindProperty that has been added. This tells ASP.NET Core that the SearchQuery

property must act as an input and an output model. This means that whenever the page

processes an HTTP request, the SearchQuery property will be given information from

that request.

The default action of ASP.NET Core is to bind information to the SearchQuery

property on an HTTP POST operation. Our page is not, however, doing a POST, but a

GET. We must therefore tell it to bind information to the SearchQuery property during a

GET operation.

Adding SupportsGet = true to the BindProperty attribute does just that. This

leaves us with one last thing to do, and that is to modify the <form> markup.

Listing 2-13.  The Modified Form Markup

<form method="get">

 <div class="form-group">

 <div class="input-group">

 <input type="search"

 class="form-control"

 asp-for="SearchQuery"/>

 <button class="btn btn-group">

 <i class="fas fa-search"></i>

 </button>

 </div>

 </div>

</form>

As illustrated in Code Listing 2-13, the properties for name and value on the <input>

element have been replaced with a tag helper called asp-for. This tag helper works with

ASP.NET Core and model binding. The asp-for tag helper is telling the page that the text

being entered into this input is for the property SearchQuery.

It is important to note that the tag helper already assumes that I am working with an

instance of my ListModel page. It is for this reason that I can reference the SearchQuery

property without prefixing it with Model.

Chapter 2 Creating Models

51

My ListModel also inherits from the abstract class PageModel. You can see this in the

class definition public class ListModel : PageModel in the List.cshtml.cs page. It is

for this reason that you can see all the properties (Figure 2-3) of the PageModel class in

the asp-for tag helper.

This means that if you don’t provide the correct casing for the property (or property

that does not exist) in the tag helper, you will get an error as shown in Figure 2-4.

To dig a little deeper into the PageModel class, simply F12 on the class name in the
List.cshtml.cs page. There you will see the properties illustrated in Figure 2-4.

You can therefore assume that asp-for knows about your ListModel and the

properties it exposes.

Figure 2-3.  The PageModel Properties

Chapter 2 Creating Models

52

Spelled correctly, the asp-for tag helper will now go out and set the name and

value of the <input> element to work with model binding and populate the value of the

SearchQuery property.

I am now able to search for a specific video in my list of videos and, after I click the

search button, see the value I searched for in the input (Figure 2-5).

Figure 2-4.  ListModel Does Not Contain a Definition for searchquery

Figure 2-5.  The VideoList Search Form

Chapter 2 Creating Models

53

�Displaying Related Data
Having a list of videos is great, but ideally, you would want to view more information

about a specific video. Displaying related data like this is a great case for using a detail

page.

With a detail page, you can send the user off to a part of the site that will display

detailed information regarding the specific video you clicked on. To start, in the Solution

Explorer, right-click the Videos folder under Pages and add a new Razor page.

You will see the Add New Scaffolded Item screen (Figure 2-6). Just select to add a

Razor Page.

Figure 2-6.  Add New Scaffolded Item

Chapter 2 Creating Models

54

Call the new Razor page Detail, and check the option to generate a PageModel class

and use a layout page. Then click the Add button (Figure 2-7).

Figure 2-7.  Add Razor Page

Chapter 2 Creating Models

55

Once the Detail page has been added, your Solution Explorer will look as in Figure 2-8.

Having a look at the DetailModel class, you will see the boilerplate code (Figure 2-14) that

we will be modifying next to display the video details.

Figure 2-8.  The Solution Explorer After Adding the Detail Page

Chapter 2 Creating Models

56

Listing 2-14.  The DetailModel Class

using Microsoft.AspNetCore.Mvc.RazorPages;

namespace VideoStore.Pages.Videos

{

 public class DetailModel : PageModel

 {

 public void OnGet()

 {

 }

 }

}

First, let’s add more information to our Video class inside the VideoStore.Core

project. I have just added three additional properties (Listing 2-15) that will help me see

what I paid for the video and if I have lent the video out to anyone.

Listing 2-15.  The Video Class

using System;

namespace VideoStore.Core

{

 public class Video

 {

 public int Id { get; set; }

 public string Title { get; set; }

 public DateTime ReleaseDate { get; set; }

 public MovieGenre Genre { get; set; }

 public double Price { get; set; }

 public bool LentOut { get; set; }

 public string LentTo { get; set; }

 }

}

I then need to add more test data for these properties to the TestData services’

constructor in the VideoStore.Data project (Listing 2-16).

Chapter 2 Creating Models

57

Listing 2-16.  The Added Test Data

public TestData()

{

 _videoList = new List<Video>()

 {

 �new Video { Id = 1, Title = "Sound of the Seven Seas", ReleaseDate

= new DateTime(2018, 1, 21), Genre = MovieGenre.Action, Price =

5.99, LentOut = false, LentTo = "" },

 �new Video { Id = 2, Title = "A Day in the Sun", ReleaseDate = new

DateTime(2019, 7, 2), Genre = MovieGenre.Drama, Price = 4.59,

LentOut = false, LentTo = "" },

 �new Video { Id = 3, Title = "Wonders of the Universe", ReleaseDate

= new DateTime(2020, 2, 14), Genre = MovieGenre.Romance, Price =

12.99, LentOut = true, LentTo = "Joah Sanderson" }

 };

}

Once I have more video details added, I can go ahead and build out the Detail page

with more information. Start by adding a using statement to bring in the VideoStore.

Core namespace. Then add a property for Video to the DetailModel class (Listing 2-17).

Listing 2-17.  The Modified DetailModel Class

using Microsoft.AspNetCore.Mvc.RazorPages;

using VideoStore.Core;

namespace VideoStore.Pages.Videos

{

 public class DetailModel : PageModel

 {

 public Video Video { get; set; }

 public void OnGet()

 {

 }

 }

}

Chapter 2 Creating Models

58

We can now turn our attention to the Detail.cshtml markup as illustrated in Code

Listing 2-18.

Listing 2-18.  The Detail Page Markup

@page

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

}

<h1>Detail</h1>

Add some more detail to the markup as illustrated in Code Listing 2-19. Here, we

can simply add a series of div elements to hold the various Video properties. You will

also notice that I used an HTML Helper for the check box to check the check box if the

video is lent out to anyone. I also only display the LentTo property value if the LentOut

property is true.

Listing 2-19.  The Expanded Detail Markup

@page

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

}

<h1>@Model.Video.Title</h1>

<div>

 Catalog ID: @Model.Video.Id

</div>

<div>

 Release Date: @Model.Video.ReleaseDate.ToString("dd MMMM yyyy")

</div>

<div>

 Genre: @Model.Video.Genre

</div>

Chapter 2 Creating Models

59

<div>

 Price: $@Model.Video.Price

</div>

<div>

 Lent Out: @Html.CheckBoxFor(x => x.Video.LentOut)

</div>

@if (Model.Video.LentOut == true)

{

 <div>

 Lent To: @Model.Video.LentTo

 </div>

}

<a asp-page="./List" class="btn btn-outline-primary">Back to Videos

Lastly, I add a way to go back to the Video List page by using the asp-page tag helper.

This tag helper will look for a page in the current directory, which is the Videos directory,

called List.

�Passing the Video ID Through to the Detail Page
With our Detail page containing the elements to display the video details, we need to

pass the ID of a selected video through from our List page to our Detail page.

We can do this by modifying the DetailModel class slightly as seen in Code

Listing 2-20. It’s as simple as giving the OnGet method an Integer parameter for the

Video ID and setting it to the Video.Id property.

Listing 2-20.  Passing a Video ID to the DetailModel Class

using Microsoft.AspNetCore.Mvc.RazorPages;

using VideoStore.Core;

namespace VideoStore.Pages.Videos

{

 public class DetailModel : PageModel

 {

 public Video Video { get; set; }

Chapter 2 Creating Models

60

 public void OnGet(int videoId)

 {

 Video = new Video();

 Video.Id = videoId;

 }

 }

}

Moving back to the markup for the List.cshtml page, we must now modify it slightly

to get the video ID and pass it through to the Detail page whenever a user clicks a video.

For this, we will add a column that contains a button that the user can click to navigate to

the Detail page.

If you think back to the code in Listing 2-4, you will remember that we just wrote the

markup to display the videos on the page.

Listing 2-21.  The Modified List.cshtml Page

<div class="container-fluid">

 <div class="row">

 <div class="col-md-3">

 Title

 </div>

 <div class="col-md-3">

 Release Date

 </div>

 <div class="col-md-3">

 Genre

 </div>

 <div class="col-md-3">

 </div>

 </div>

 @foreach (var video in Model.Videos)

 {

 <div class="row">

 <div class="col-md-3">

 @video.Title

Chapter 2 Creating Models

61

 </div>

 <div class="col-md-3">

 @video.ReleaseDate.ToShortDateString()

 </div>

 <div class="col-md-3">

 @video.Genre

 </div>

 <div class="col-md-3">

 <div>

 �<a class="btn btn-lg" asp-page="./Detail" asp-route-

videoId="@video.Id">

 <i class="fas fa-info-circle"></i>

 </div>

 </div>

 </div>

 }

</div>

Modify the markup as illustrated in Code Listing 2-21 to add a div element to contain

a button that the user can click to navigate to the Detail page.

Please note that I have not included the full markup for the List.cshtml page in
Listing 2-21. The complete source code is available on GitHub.

Let’s take a closer look at the tag helpers on the <a> link element. To make it easier, I

have added just the button code to the code in Listing 2-22.

Listing 2-22.  The Button Tag Helpers

<div class="col-md-3">

 <div>

 �

 <i class="fas fa-info-circle"></i>

 </div>

</div>

Chapter 2 Creating Models

62

You can see that we are using the same tag helper, asp-page, that we previously used

in Listings 2-1 and 2-19 to specify a page to navigate to (which is the Detail page in this

example). It does this by setting the href attribute to point to the correct page.

Tag helpers are the preferred way to add logic to your page because they know about

the structure and inputs that the page needs. Tag helpers are therefore flexible because

if you change your page in any way, the tag helpers will automatically know about that

change. In addition to telling the tag helpers which page we need to navigate to, we

also need a way to pass the video ID to the Detail page. This is where the asp-route

tag helper comes in handy. It is a little more dynamic and allows me to include the

parameter name that I want to pass to the Detail page by including it in the tag helper

name.

This means that when I write asp-route-videoId and give it the video ID as a

parameter value, the tag helper will figure out how to pass the video ID to the Detail

page.

Referring back to the code in Listing 2-22 and taking a look at the rendered code in

Figure 2-9, you can see how the tag helpers rendered the markup based on one of the

videos on our list. The href value has been populated with the use of tag helpers and will

navigate the user to the Detail page, passing that page the specific video ID.

Figure 2-9.  The Generated HTML for Code Listing 2-22

Chapter 2 Creating Models

63

If we click a video in the list, then the ID of that video will be passed to the Detail

page as seen in Figure 2-10. The URL to that page is also as we expected (Listing 2-23)

where the video ID is being passed to the Detail page in the query string.

Listing 2-23.  The URL to the Detail Page

https://localhost:44398/Videos/Detail?videoId=1

ASP.NET Core allows us to control this behavior with page routes. We don’t have to

stick with the URL format, using a query string, generated by the tag helpers. Let’s have a

look at how to control this behavior.

�Working with Page Routes
A common way for web pages to pass values to other pages is to make use of the URL

path. I don’t have to use the query string to pass the video ID through to the Detail page.

I can control this behavior by modifying the @page directive in the Detail.cshtml page.

Referring back to the code in Listing 2-19, you will see the @page directive, illustrated in

Listing 2-24, at the top of the page.

Figure 2-10.  The Video Detail Page

Chapter 2 Creating Models

64

Listing 2-24.  The @page Directive

@page

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

}

Here, I can supply ASP.NET Core a string parameter after the @page directive, telling

it what I want the route to be. Remember, the URL will always start with /Videos/Detail

as illustrated in Listing 2-23.

If I specify a different route in the @page directive, I can change the URL as illustrated

in Listing 2-25.

Listing 2-25.  Changing the Route

@page "/Videos/Store"

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

}

If I run the web application and navigate to the Detail page for a specific video, I see

that my URL has changed as illustrated in Figure 2-11.

Chapter 2 Creating Models

65

This still contains the query string though, and what I want to do is introduce a new

URL segment containing the video ID parameter. I can do this by adding the parameter

inside of curly braces as seen in Listing 2-26.

Listing 2-26.  The Video ID as a New URL Segment

@page "{videoId}"

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

}

This tells ASP.NET Core that I want my page URL to be Videos/Detail/{videoId}

where {videoId} is the ID of the video clicked in the list of videos. This {videoId} can be

further constrained by specifying the data type "{videoId:int}". Here, I am telling ASP.

NET Core that the ID parameter must be an Integer value.

With this in place, the complete code for the Detail.cshtml page will be as illustrated

in Code Listing 2-27.

Figure 2-11.  The Changed URL

Chapter 2 Creating Models

66

Listing 2-27.  Complete Code Listing for the Detail.cshtml Page

@page "{videoId:int}"

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

}

<h1>@Model.Video.Title</h1>

<div>

 Catalog ID: @Model.Video.Id

</div>

<div>

 Release Date: @Model.Video.ReleaseDate.ToString("dd MMMM yyyy")

</div>

<div>

 Genre: @Model.Video.Genre

</div>

<div>

 Price: $@Model.Video.Price

</div>

<div>

 Lent Out: @Html.CheckBoxFor(x => x.Video.LentOut)

</div>

@if (Model.Video.LentOut == true)

{

 <div>

 Lent To: @Model.Video.LentTo

 </div>

}

<a asp-page="./List" class="btn btn-outline-primary">Back to Videos

Running the web application, the URL is now exactly as I want it to be (Figure 2-12).

If I wanted to tell ASP.NET that the ID parameter is optional, I could also have specified

this in the @page directive by specifying "{videoId?:int}". Whatever I do here though,

Chapter 2 Creating Models

67

ASP.NET Core knows that the third segment of the URL will specify a parameter called

videoId.

If we compare the image in Figure 2-9 with the image in Figure 2-13, you will notice

how the tag helpers have changed the markup. It now specifies a new URL segment.

All we have done here is pass the Video ID through to the Detail page. As you can

see, none of the other details have been displayed on the Detail page at all, and this is

expected. If you look back at the code in Listing 2-20, you will see that we are only setting

the Video.Id property.

Figure 2-13.  The Generated Markup Specifying the ID in the Page Route

Figure 2-12.  The Correct URL Format

Chapter 2 Creating Models

68

�Populating Video Details
To populate the Detail page with the specific video data, we need to make a few small

changes. We need to modify the TestData class to return a video by ID. It is at this

point that you should be thinking of modifying the Interface IVideoData because this

functionality must be implemented by any class that implements IVideoData. So with

this in mind, open up the IVideoData Interface and define a method called GetVideo

that will return a single video by ID (Listing 2-28).

Listing 2-28.  The Modified IVideoData Interface

using System.Collections.Generic;

using VideoStore.Core;

namespace VideoStore.Data

{

 public interface IVideoData

 {

 IEnumerable<Video> ListVideos(string title);

 Video GetVideo(int id);

 }

}

As you know, because we have modified our Interface, we also need to implement

that change on the TestData class that implements the IVideoData Interface.

Listing 2-29.  The Complete TestData Class

using System;

using System.Collections.Generic;

using System.Linq;

using VideoStore.Core;

namespace VideoStore.Data

{

 public class TestData : IVideoData

 {

 List<Video> _videoList;

Chapter 2 Creating Models

69

 public TestData()

 {

 _videoList = new List<Video>()

 {

 �new Video { Id = 1, Title = "Sound of the Seven Seas",

ReleaseDate = new DateTime(2018, 1, 21), Genre =

MovieGenre.Action, Price = 5.99, LentOut = false, LentTo =

"" },

 �new Video { Id = 2, Title = "A Day in the Sun", ReleaseDate

= new DateTime(2019, 7, 2), Genre = MovieGenre.Drama, Price

= 4.59, LentOut = false, LentTo = "" },

 �new Video { Id = 3, Title = "Wonders of the Universe",

ReleaseDate = new DateTime(2020, 2, 14), Genre =

MovieGenre.Romance, Price = 12.99, LentOut = true, LentTo =

"Joah Sanderson" }

 };

 }

 �public IEnumerable<Video> ListVideos(string title = null) => _

videoList

 .Where(x => string.IsNullOrEmpty(title)

 || x.Title.StartsWith(title))

 .OrderBy(x => x.Title);

 �public Video GetVideo(int id) => _videoList.SingleOrDefault(x =>

x.Id == id);

 }

}

The expression-bodied GetVideo method in Listing 2-29 simply returns a video from

the _videoList collection. This now matches the Interface definition. The last section of

code that we need to modify is on our Detail.cshtml.cs page.

You will need to add a reference to the VideoStore.Data namespace in the using
statements of the Detail.cshtml.cs class.

Chapter 2 Creating Models

70

With the relevant namespace added, modify the Detail.cshtml.cs page as illustrated

in Listing 2-30.

Listing 2-30.  The Modified Detail Page

using Microsoft.AspNetCore.Mvc.RazorPages;

using VideoStore.Core;

using VideoStore.Data;

namespace VideoStore.Pages.Videos

{

 public class DetailModel : PageModel

 {

 private readonly IVideoData _videoData;

 public Video Video { get; set; }

 public DetailModel(IVideoData videoData)

 {

 _videoData = videoData;

 }

 public void OnGet(int videoId)

 {

 Video = _videoData.GetVideo(videoId);

 }

 }

}

I have simply added a constructor to the page that accepts an object of type

IVideoData which is then initialized to a private field _videoData.

I like naming my private fields with a leading underscore. Some developers keep
the field name and the parameter name the same, prefixing the private field with
the this keyword. For me, an underscore _videoData = videoData is cleaner
than this.videoData = videoData.

Chapter 2 Creating Models

71

In the OnGet method, I can change the code to use the data service to get a specific

video. This is all we need to do. Go ahead and run your application.

When you click one of the videos in the list, the video ID is passed through to the

Detail page, and the video details are populated as seen in Figure 2-14. The last bit of

work that we would need to do is to handle any bad requests coming to our Detail page.

In the image in Figure 2-14, you will notice (in the URL) that the video ID being passed

to the Detail page is ID 1. If the user tried to change this ID to anything other than what

our video collection contains, a null reference exception would occur. Let’s fix that in the

next section.

�Handling Bad Requests
At some point in time, you might need to handle bad requests. Assume that the user

accidentally typed in the incorrect URL, or bookmarked a video that no longer exists

in the catalog. Sending the user to the Detail page for a nonexistent ID will result in a

NullReferenceException as seen in Figure 2-15.

Figure 2-14.  The Video Detail Page

Chapter 2 Creating Models

72

By default, ASP.NET Core projects are created with some boilerplate code in place.
This is very convenient. One such section of code is in the Startup.cs page, in the
Configure method. The code that handles exceptions is illustrated in Listing 2-31.

Listing 2-31.  Handling Errors

if (env.IsDevelopment())
{
 _ = app.UseDeveloperExceptionPage();
}
else
{
 _ = app.UseExceptionHandler("/Error");
 _ = app.UseHsts();

}

Figure 2-15.  A NullReferenceException Page

Chapter 2 Creating Models

73

What this code does is display a developer exception page (Figure 2-15) when

you are in development. When your application is not in development mode, the web

application will redirect to a generic Error page (Figure 2-16).

When this Error page is displayed, the page just informs the user that something

went wrong and that Development Mode is required to see specifics.

Figure 2-16.  The Error Page

Chapter 2 Creating Models

74

You never want to show developer exception messages to a user in production. Not

only does this create a bad user experience (the impression of a buggy web application)

but also poses a security risk.

The Error page in Figure 2-17 is great for unhandled errors in your application, but I

would like a bit more control over the errors displayed to the user.

To do this, add another Razor page to the Videos folder called VideoError as seen in

Figure 2-18.

Figure 2-17.  The Generic Error Page

Chapter 2 Creating Models

75

Thinking back to the section on working with page routes, add a message parameter

to the @page directive (Listing 2-32).

Listing 2-32.  The VideoError Markup

@page "{message}"

@model VideoStore.Pages.Videos.VideoErrorModel

@{

 ViewData["Title"] = "VideoError";

}

<h1>Error</h1>

<div>@Model.Message</div>

<a asp-page="./List" class="btn alert-info">Back to Video List

The @Model.Message property does not exist yet, but we’ll add that next. On the

VideoError.cshtml.cs page, add the code in Listing 2-33.

Figure 2-18.  The VideoError Page

Chapter 2 Creating Models

76

Listing 2-33.  The VideoErrorModel Class

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

namespace VideoStore.Pages.Videos

{

 public class VideoErrorModel : PageModel

 {

 [BindProperty(SupportsGet = true)]

 public string Message { get; set; }

 public void OnGet()

 {

 }

 }

}

This code should feel very familiar to you. It’s the same logic we used in the List.

cshtml.cs page. You will notice the BindProperty attribute on the Message property. This

tells ASP.NET Core that the Message property must act as an input and an output model.

This means that whenever the page processes an HTTP request, the Message property

will be given information from that request. The last change we need to make is to the

Detail.cshtml.cs page as illustrated in Listing 2-34.

Listing 2-34.  The DetailModel with the Modified OnGet Method

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using VideoStore.Core;

using VideoStore.Data;

namespace VideoStore.Pages.Videos

{

 public class DetailModel : PageModel

 {

 private readonly IVideoData _videoData;

 public Video Video { get; set; }

Chapter 2 Creating Models

77

 public DetailModel(IVideoData videoData)

 {

 _videoData = videoData;

 }

 public IActionResult OnGet(int videoId)

 {

 Video = _videoData.GetVideo(videoId);

 �return Video == null ? RedirectToPage("./VideoError", new {

message = "The video does not exist" }) : (IActionResult)

Page();

 }

 }

}

The OnGet method has changed slightly. It now returns an IActionResult and defines

a contract that represents the result of the OnGet method. If the Video object returned

is not null, render the page. If the Video object is null, then redirect to the VideoError

page and pass it the message “The video does not exist”. Run your web application and

pass it the following URL in Listing 2-35.

Listing 2-35.  A Request with an Incorrect Video ID

https://localhost:44398/Videos/Detail/10

The OnGet method will now redirect to the Error page in Figure 2-19.

Chapter 2 Creating Models

78

The magic of model binding took the message we provided and displayed it on the

VideoError page.

Figure 2-19.  The VideoError Page with Our Message

Chapter 2 Creating Models

79
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5_3

CHAPTER 3

Modifying Data
In the last chapter, we implemented some search logic to find specific videos. We also

created a detail page to display the video details after a user clicks a specific video. A

logical next step for our application is to be able to modify the data we display.

The logical place to do this would be from the Video List page. Here, the user can

click a specific video in the list to view more details about that video or to edit the details

of that video. Let’s have a look at how to do that in the next sections.

�Editing Existing Data and Using Tag Helpers
Having a look at the markup on the Video List page, you will see that the @foreach

section builds up the list of videos. It is here, too, that we added logic to create a link to

the Detail page.

We can use much of this existing logic to take the user to a page where they can edit

the video. The existing markup is illustrated in Listing 3-1.

Listing 3-1.  The Existing ForEach Detail Page Markup

@foreach (var video in Model.Videos)

{

 <div class="row">

 <div class="col-md-3">

 @video.Title

 </div>

 <div class="col-md-3">

 @video.ReleaseDate.ToShortDateString()

 </div>

 <div class="col-md-3">

 @video.Genre

 </div>

https://doi.org/10.1007/978-1-4842-6828-5_3#DOI

80

 <div class="col-md-3">

 <div>

 �<a class="btn btn-lg" asp-page="./Detail" asp-route-

videoId="@video.Id">

 <i class="fas fa-info-circle"></i>

 </div>

 </div>

 </div>

}

What we want to do is add a second link after the one that takes us to the Detail page.

To keep it all neat, I added another div with the row class and moved the div with the

link to the Detail page inside there. I then added a link for a new page (which we will

create in a minute) called Edit. Refer to the code in Listing 3-2.

Listing 3-2.  The Modified ForEach Detail Page Markup

@foreach (var video in Model.Videos)

{

 <div class="row">

 <div class="col-md-3">

 @video.Title

 </div>

 <div class="col-md-3">

 @video.ReleaseDate.ToShortDateString()

 </div>

 <div class="col-md-3">

 @video.Genre

 </div>

 <div class="col-md-3">

 <div class="row">

 <div class="col-md-6">

 �<a class="btn btn-lg" asp-page="./Detail" asp-route-

videoId="@video.Id">

 <i class="fas fa-info-circle"></i>

Chapter 3 Modifying Data

81

 </div>

 <div class="col-md-6">

 �<a class="btn btn-lg" asp-page="./Edit" asp-route-

videoId="@video.Id">

 <i class="fa fa-pencil"></i>

 </div>

 </div>

 </div>

 </div>

}

Running the web application, you should see that the edit button has now been

added to the Video List page (Figure 3-1). Currently, it doesn’t go anywhere because the

Edit page does not exist yet.

In the Solution Explorer, right-click the Videos folder and add a new Razor page.

Name this Razor page Edit, and keep the defaults for the PageModel class and the layout

page, and click the Add button (Figure 3-2).

Figure 3-1.  The Video List Page with an Edit Button

Chapter 3 Modifying Data

82

Once the Edit page has been added to your solution, your Videos folder should look

as illustrated in Figure 3-3.

Figure 3-2.  Adding the Edit Page

Chapter 3 Modifying Data

83

Having a look at the Edit.cshtml.cs page, you will recognize the boilerplate code

(Listing 3-3) that has been added for us.

Listing 3-3.  The Edit Page Boilerplate Code

namespace VideoStore.Pages.Videos

{

 public class EditModel : PageModel

 {

 public void OnGet()

Figure 3-3.  The Added Edit Page in the Solution Explorer

Chapter 3 Modifying Data

84

 {

 }

 }

}

We now need to add a constructor to this page so that we can inject our data service.

You will need to bring in the VideoStore.Data and the VideoStore.Core namespaces
before being able to use the IVideoData data service and the Video class.

The injected data service is then saved to a private field called _videoData. We then

add a property called Video to the EditModel class that will contain the video we want

to edit, and add the IActionResult return type to the OnGet method and pass it the

videoId. The OnGet method then calls the data service and gets the video data for the

supplied ID. If an invalid ID is passed, we handle that as a video error. The complete

code is illustrated in Listing 3-4.

Listing 3-4.  The EditModel Class

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using VideoStore.Core;

using VideoStore.Data;

namespace VideoStore.Pages.Videos

{

 public class EditModel : PageModel

 {

 private readonly IVideoData _videoData;

 public Video Video { get; set; }

 public EditModel(IVideoData videoData)

 {

 _videoData = videoData;

 }

Chapter 3 Modifying Data

85

 public IActionResult OnGet(int videoId)

 {

 Video = _videoData.GetVideo(videoId);

 �return Video == null ? RedirectToPage("./VideoError", new {

message = "The video does not exist" }) : (IActionResult)

Page();

 }

 }

}

If this code feels slightly familiar, then it is because it is almost an exact copy of the

Detail page. Just like the Detail page, we want to specify the videoId attribute after the @

page directive.

Listing 3-5.  The Edit Page Markup

@page "{videoId:int}"

@model VideoStore.Pages.Videos.EditModel

@{

 ViewData["Title"] = "Edit";

}

<h1>Editing: @Model.Video.Title</h1>

The markup illustrated in Listing 3-5 shows us the modified page. You will also

notice that we have added the video title to the <h1> tag.

Running the web application will show the changes we have made to the Video List

page (Figure 3-4).

Chapter 3 Modifying Data

86

Clicking the edit button next to one of the videos in the list will take us to the Edit

page (Figure 3-5).

Figure 3-5.  The Edit Page

Figure 3-4.  The Modified Video List Page

Chapter 3 Modifying Data

87

Here, you can see that the Edit page is displaying the title of the video we clicked

and the URL contains the video ID. Up until now, the creation of the Edit page has

been rather straightforward. We now need to start building the Edit page by adding the

required controls on the page. Let’s do that next.

�Building the Edit Form
Thinking back to Chapter 2, you will remember that we added a search form to the List.

cshtml page. There, the form method was set as a GET because we were reading data.

Now, we want to edit video data, and for that, we need to use a POST.

At its most basic, we will need to add the <form> markup as illustrated in Listing 3-6.

Listing 3-6.  The Basic Form with a Post Method

<form method="post">

 <button type="submit" class="btn border-primary">Update Video</button>

</form>

Using this basic boilerplate code, we now need to add additional <div> elements

to add labels and input for the video data. Looking back at the Video class in the

VideoStore.Core project, you will see all the properties that you need to add input for.

The code in Listing 3-7 is the complete code for the form that we need to edit the video

data.

Listing 3-7.  Complete Edit Markup

@page "{videoId:int}"

@using VideoStore.Core;

@model VideoStore.Pages.Videos.EditModel

@{

 ViewData["Title"] = "Edit";

}

<h1>Editing: @Model.Video.Title</h1>

<form method="post">

Chapter 3 Modifying Data

88

 <input type="hidden" asp-for="Video.Id" />

 <div class="form-group">

 <label asp-for="Video.Title"></label>

 <input asp-for="Video.Title" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Video.ReleaseDate"></label>

 <input asp-for="Video.ReleaseDate" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Video.Genre"></label>

 <select class="form-control" asp-for="Video.Genre"

 asp-items="Html.GetEnumSelectList<MovieGenre>()">

 </select>

 </div>

 <div class="form-group">

 <label asp-for="Video.Price"></label>

 <input asp-for="Video.Price" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Video.LentOut"></label>

 <input asp-for="Video.LentOut" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Video.LentTo"></label>

 <input asp-for="Video.LentTo" class="form-control" />

 </div>

 <button type="submit" class="btn border-primary">Update Video</button>

</form>

I would like to point out a few things here. Underneath the @page directive, you

will see that I have imported the VideoStore.Core namespace. This is to allow us to

Chapter 3 Modifying Data

89

reference the MovieGenre enum in a drop-down list on the form. This code is illustrated

in Listing 3-8.

Listing 3-8.  The MovieGenre Drop-down

<div class="form-group">

 <label asp-for="Video.Genre"></label>

 <select class="form-control" asp-for="Video.Genre"

 asp-items="Html.GetEnumSelectList<MovieGenre>()">

 </select>

</div>

For each label and input tag, you will notice that we make use of the asp-for tag

helper. By using asp-for, we set the name attribute of the input so that model binding

knows what to do with the value supplied. In other words, the asp-for="Video.Title"

attribute will know that the value supplied is for the title of the video.

With the MovieGenre, for example, the items in the enum can’t be bound to an

<input>. We also don’t want to allow the user to type in a value, because we need them

to select one of the options in the MovieGenre enum.

It is for this reason that we make use of an HTML <select> in the markup. This will

generate a drop-down list with the MovieGenre enum values as its items. By using the

asp-items tag helper, we can tell it to use a collection of items as its drop-down items by

giving it the HTML helper Html.GetEnumSelectList<MovieGenre>().

If we run the web application now, we will see that the drop-down list has been

populated with the enum values and that the drop-down has selected the correct video

genre (Figure 3-6) for the selected video.

Chapter 3 Modifying Data

90

You could also manually add items to your <select> element by adding in <option>

elements as illustrated in Listing 3-9.

Listing 3-9.  Manually Specifying Drop-down Items

<select class="form-control" asp-for="Video.Genre">

 <option>Test 1</option>

 <option>Test 2</option>

 <option>Test 3</option>

</select>

Figure 3-6.  The Edit Form with the Drop-down for Genre

Chapter 3 Modifying Data

91

This is, however, not something that we want to do here. There is another way to

bind the dropdown list and that is to add some logic to my EditModel. This removes

the need to add a using statement to the Razor page and allows me to specify the items

required for the drop-down list in my EditModel class.

Having a look at GetEnumSelectList, you will notice that the Intellisense specifies

that it returns an IEnumerable<SelectListItem> in Figure 3-7.

I can, therefore, add a property to my EditModel class of

IEnumerable<SelectListItem> that will contain the items for the MovieGenre enum

(Listing 3-10).

Listing 3-10.  The Genres Property

public IEnumerable<SelectListItem> Genres { get; set; }

This property can now be used with the asp-items tag helper to display the

MovieGenre items in my drop-down.

Please note that you will need to bring in the using statements for Microsoft.
AspNetCore.Mvc.Rendering and System.Collections.Generic.

Because we are working in the EditModel class, we can’t directly reference the HTML

helper GetEnumSelectList. That HTML helper is only available on the Razor page. What

we can do is tell ASP.NET Core to inject the IHtmlHelper service to the constructor that

will allow me to use that helper (Listing 3-11).

Figure 3-7.  IEnumerable<SelectListItem> Return Type

Chapter 3 Modifying Data

92

Listing 3-11.  Injecting the IHtmlHelper Service

public EditModel(IVideoData videoData, IHtmlHelper helper)

{

 _videoData = videoData;

}

Just as before with the IVideoData service, we can save the IHtmlHelper to a private

field and reference that in our OnGet method (Listing 3-12).

Listing 3-12.  The Complete EditModel Class

public class EditModel : PageModel

{

 private readonly IVideoData _videoData;

 private readonly IHtmlHelper _helper;

 public Video Video { get; set; }

 public IEnumerable<SelectListItem> Genres { get; set; }

 public EditModel(IVideoData videoData, IHtmlHelper helper)

 {

 _videoData = videoData;

 _helper = helper;

 }

 public IActionResult OnGet(int videoId)

 {

 Genres = _helper.GetEnumSelectList<MovieGenre>();

 Video = _videoData.GetVideo(videoId);

 �return Video == null ? RedirectToPage("./VideoError", new {

message = "The video does not exist" }) : (IActionResult)Page();

 }

}

You will notice that the line of code Genres = _helper.GetEnumSelectList<Movi

eGenre>(); in our OnGet method looks almost identical to the markup we added in the

asp-items tag helper in the markup on the Razor page.

Chapter 3 Modifying Data

93

We can therefore modify the markup in the <select> element’s asp-items tag helper

to reference the Genres property on our EditModel class.

The code will look as in Listing 3-13.

Listing 3-13.  The Modified Markup

<select class="form-control" asp-for="Video.Genre" asp-items="Model.Genres">

</select>

For clarity, I have included the entire Edit.cshtml page’s markup (Listing 3-14) so

that you can see how it has been modified.

Listing 3-14.  The Complete Edit Page Markup

@page "{videoId:int}"

@model VideoStore.Pages.Videos.EditModel

@{

 ViewData["Title"] = "Edit";

}

<h1>Editing: @Model.Video.Title</h1>

<form method="post">

 <input type="hidden" asp-for="Video.Id" />

 <div class="form-group">

 <label asp-for="Video.Title"></label>

 <input asp-for="Video.Title" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Video.ReleaseDate"></label>

 <input asp-for="Video.ReleaseDate" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Video.Genre"></label>

 <select class="form-control" asp-for="Video.Genre"

 asp-items="Model.Genres">

 </select>

 </div>

Chapter 3 Modifying Data

94

 <div class="form-group">

 <label asp-for="Video.Price"></label>

 <input asp-for="Video.Price" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Video.LentOut"></label>

 <input asp-for="Video.LentOut" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Video.LentTo"></label>

 <input asp-for="Video.LentTo" class="form-control" />

 </div>

 <button type="submit" class="btn border-primary">Update Video</button>

</form>

If you run the web application again, you should still see the same items listed in the

drop-down as illustrated in Figure 3-6.

Looking at the generated markup for the drop-down (Figure 3-8), you will notice that

the markup looks a lot like the code in Listing 3-9, where we could manually specify the

drop-down items.

This is what tag helpers and HTML helpers allow us to do. They allow us to insert

short snippets of HTML markup into our page.

Figure 3-8.  The Generated Markup for the Drop-down

Chapter 3 Modifying Data

95

�Changing the Data Service
We need to add the logic to save the modified video data to the data store. At the

moment, we are only binding the video data to the fields on the form, but we aren’t

doing anything with the form to be able to save the modifications.

We only have an OnGet method in our EditModel class. Looking at the <form>

element on the Razor page, you will see that the method specified is a POST. So working

from the bottom up (if you consider the data source at the bottom and the UI at the top

as I do), let’s modify the IVideoData Interface for the data source first.

We need to add two new portions of logic to our Interface to allow us to work with

modified data. These are

•	 Updating a video

•	 Saving the changes to the database

I am splitting the logic for the Update and Commit because I want to separate my

data service logic.

In other words, I only want my update method to take an existing record and update

the properties with the changed data coming in from the Edit form. I also might want to

do some additional validation and inspect the changed video data before committing it

to the database.

For this reason, I have a separate Save method. Consider the changes to the

IVideoData Interface in Listing 3-15.

Listing 3-15.  The Modified IVideoData Interface

public interface IVideoData

{

 IEnumerable<Video> ListVideos(string title);

 Video GetVideo(int id);

 Video UpdateVideo(Video videoData);

 int Save();

}

We will now need to provide implementations for these new methods that we added

to the Interface. In other words, we need to modify every class that implements this

Interface to provide the implementations for the new methods. At the moment, the only

class implementing the IVideoData Interface is our TestData service.

Chapter 3 Modifying Data

96

Listing 3-16.  The UpdateVideo method

public Video UpdateVideo(Video updatedVideoData)

{

 var dbObj = _videoList.SingleOrDefault(x => x.Id == updatedVideoData.Id);

 if (dbObj != null)

 {

 dbObj.Title = updatedVideoData.Title;

 dbObj.ReleaseDate = updatedVideoData.ReleaseDate;

 dbObj.Genre = updatedVideoData.Genre;

 dbObj.Price = updatedVideoData.Price;

 dbObj.LentOut = updatedVideoData.LentOut;

 dbObj.LentTo = updatedVideoData.LentTo;

 }

 return dbObj;

}

Add a method to the TestData class called UpdateVideo as illustrated in Listing 3-16.

This method is only concerned with updating the video data. It takes the ID from the

updatedVideoData object and tries to find a match in the _videoList test data.

If a match is found, then the object found is updated with the values in the

updatedVideoData.

We also need to provide an implementation for the Save method, as we are currently

not saving any data. Remember, we are only working with test data here. We are doing

this so that we can get all the moving parts in place before hooking our web application

up to real data.

Listing 3-17.  The Save Method

public int Save() => 0;

This means that we can simply return 0 for the Save method (Listing 3-17) because

we are not actually going to save any data in our TestData service.

Chapter 3 Modifying Data

97

�Validate Edited Data and Display Validation Errors
There is a saying that states, never trust a skinny cook. Well, the same is true in software

development when it comes to users. Never trust the data entered on a form by a user.

Doing so will get you into trouble in no time.

Many years ago, I was working on a project where the validation was incorrectly

implemented on a form. It was a technical database that contained recipes for beauty

products. These recipes were then loaded into the manufacturing process that

integrated with that company’s ERP system. The ERP system then created jobs for the

manufacturing process to run.

Now and then, some of these recipes were changed to accommodate new raw

materials, new measurements, and so on to affect the net quantity or volume of the

finished product.

Yes, companies do sometimes alter the weight or volume of products. Just look
at how small chocolates have become. Where I live, I used to be able to buy my
favorite 100g chocolate, but now, sadly, we only get 90g chocolates.

The form that was used to enter and modify recipes provided adequate validation

for the inputs from the user. It then displayed the updated entries in a data grid before

saving that to the database. The data grid was the last check for the user to verify that the

data was entered correctly before submitting it.

A few weeks after the application was installed and signed off, the client informed

us that saving or updating recipes no longer worked. The application was presenting

the user with an error. The screenshot they sent showed that this was an unhandled

exception.

It turned out that while the users could only enter the validated information via

the form fields, they found out that they could modify that data in the data grid before

submitting it.

The data grid was only meant as a way of verifying the entered data and needed to

be read-only, which it wasn’t. When they figured out that they could modify the data

directly inside the grid, all the previous validation performed on the entry form was

irrelevant.

It’s like that movie with the dinosaurs where Jeff Goldblum states that life finds a way.

Well, when dealing with end users, they will find a way of entering invalid data.

Chapter 3 Modifying Data

98

With this chestnut in mind, and armed with what we know about end users, we need

to provide validation for the entered data on the form. Start by adding an OnPost method

(Listing 3-18) to your EditModel class.

Listing 3-18.  The OnPost Method

public IActionResult OnPost()

{

 return Page();

}

It might be tempting to add a whole lot of if statements here to perform validation

of the entered data. Fortunately for us, ASP.NET Core provides an easy way to

perform input validation. We can add data annotations to our Video model inside the

VideoStore.Core project.

Be sure to add the required namespace via the System.ComponentModel.
DataAnnotations using statement.

Make a slight change to your Video model by adding the [Required] annotation to

the Title property as illustrated in Listing 3-19.

Listing 3-19.  Adding a Required Field Validation to Title

using System;

using System.ComponentModel.DataAnnotations;

namespace VideoStore.Core

{

 public class Video

 {

 public int Id { get; set; }

 [Required]

 public string Title { get; set; }

 public DateTime ReleaseDate { get; set; }

 public MovieGenre Genre { get; set; }

 public double Price { get; set; }

Chapter 3 Modifying Data

99

 public bool LentOut { get; set; }

 public string LentTo { get; set; }

 }

}

We can now use the asp-validation-for tag helper to provide some feedback to the

user on the form if an entered value is incorrect. In your Edit.cshtml Razor page, modify

the div containing the Video.Title input as illustrated in Listing 3-20.

Listing 3-20.  Validation Added to Video.Title

<div class="form-group">

 <label asp-for="Video.Title"></label>

 <input asp-for="Video.Title" class="form-control" />

</div>

Switch back over to the EditModel class, and because the video ID on the form is

the one that we want to modify, we can add the [BindProperty] attribute to the Video

property.

You will remember from the previous chapter that this will change the property to
be an input and an output property.

The modified property will need to be changed to look as illustrated in Listing 3-21.

Listing 3-21.  Modifying the Video Property

[BindProperty]

public Video Video { get; set; }

Therefore, when the user clicks the Update Video button, the Video property will be

populated with the values entered on the form.

With all this in place, and with the data annotations on my Video model, validating

the entered data is very easy. Whenever ASP.NET Core performs model binding on my

Video model, the framework keeps a record of everything that happens to that data

inside something we call ModelState. I can now check to see if that ModelState is valid

before updating any of my entered form data.

Chapter 3 Modifying Data

100

Go ahead and change the OnPost method to check the ModelState as illustrated in

Listing 3-22, and if valid, update the video data.

Listing 3-22.  Modified OnPost Method

public IActionResult OnPost()

{

 if (ModelState.IsValid)

 {

 _ = _videoData.UpdateVideo(Video);

 _ = _videoData.Save();

 return RedirectToPage("./Detail", new { videoId = Video.Id });

 }

 Genres = _helper.GetEnumSelectList<MovieGenre>();

 return Page();

}

You will also notice that I rebind the Genres property because ASP.NET Core is

stateless and the values are not persisted during the OnPost method. I also tell the web

application that if the ModelState is valid, and the video has been updated, then it must

redirect to the Detail page.

You will remember that we added the videoId in the @page directive of the
Detail Razor page. This is why I pass the Video.Id in the route values on the
RedirectToPage method in the OnPost method of the Edit page.

Running the application and trying to enter a blank title for the video will result in

the form validation displaying a validation error on the Edit page as seen in Figure 3-9.

Chapter 3 Modifying Data

101

This is what we wanted. We do not want the user to update the video without

specifying a title for the video. But there is another problem (well, only while we are in

development, anyway). Modify the video title, and click the Update Video button.

You will be redirected to the Detail page, but you will notice that the details

you changed are not being displayed on the Detail page. This is not a bug, and it is

because we did something way back when we specified the IVideoData service in the

ConfigureServices method of the Startup.cs file.

You will remember (as illustrated in Listing 3-23) that we specified that whenever

someone needs an instance of IVideoData, provide them an instance of our TestData

class.

But we told the services collection to provide a scoped instance by calling the

services.AddScoped method.

Figure 3-9.  The Form Validation at Work

Chapter 3 Modifying Data

102

Listing 3-23.  The ConfigureServices Method in the Startup.cs

public void ConfigureServices(IServiceCollection services)

{

 _ = services.AddScoped<IVideoData, TestData>();

 _ = services.AddRazorPages();

}

To see the modified data in our test data, we want to add a singleton instance of

our TestData (Listing 3-24). This is something we will only be doing while we are in

development. You would most likely want to add in a TODO here to remember to change

this back when we are ready to work against a real database.

Listing 3-24.  Provide a Singleton Instance of TestData for Testing

public void ConfigureServices(IServiceCollection services)

{

 //_ = services.AddScoped<IVideoData, TestData>();

 �_ = services.AddSingleton<IVideoData, TestData>(); // TODO: Change to

scoped

 _ = services.AddRazorPages();

}

With this change made, run your web application again and modify the video data

and save your changes. You will see that the details displayed on the Detail page have

been updated to display your modifications.

�AddSingleton vs. AddScoped vs. AddTransient
I want to pause here for a second to discuss the different lifetimes that we can add for the

services. You can register the following lifetimes for the services collection:

•	 Singleton

•	 Scoped

•	 Transient

Each one of these is leveraged during dependency injection, and you will need to

make sure that you choose the appropriate lifetime for each registered service.

Chapter 3 Modifying Data

103

�Singleton

When creating a singleton lifetime service (using the AddSingleton method), every

subsequent request will make use of the same instance. This means that in applications

that process requests (like our web application), the singleton services are disposed of

when the application is shut down (because the ServiceProvider is disposed).

�Scoped

A scoped lifetime is only created once per client request (or connection). As you saw in

the code in Listing 3-23, we register scoped services using the AddScoped method. This

means that with applications that process requests, scoped services will be disposed of at

the end of the request.

�Transient

A service created with a transient lifetime will be created each time they are requested

from the service container. In other words, you are telling ASP.NET Core that every time

the service is requested, you want a new instance of that service. Transient services are

therefore disposed of at the end of the request.

�Implementing IValidatableObject
If you need to perform slightly more complex validations, you can do so by

implementing the IValidatableObject on your model. Think of the Lent Out check box

on the form. If this is checked, we want to make the Lent To field required. How can we

do this? Well, this is where the IValidatableObject Interface comes in handy.

Open the Video class in the VideoStore.Core project, and implement this Interface.

In the Validate method, provide your custom implementation for the LentTo property

as illustrated in the code in Listing 3-25.

Listing 3-25.  Implementing the IValidatableObject

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

Chapter 3 Modifying Data

104

namespace VideoStore.Core

{

 public class Video : IValidatableObject

 {

 public int Id { get; set; }

 [Required]

 public string Title { get; set; }

 public DateTime ReleaseDate { get; set; }

 public MovieGenre Genre { get; set; }

 public double Price { get; set; }

 public bool LentOut { get; set; }

 public string LentTo { get; set; }

 �public IEnumerable<ValidationResult> Validate(ValidationContext

validationContext)

 {

 var property = new[] { nameof(LentTo) };

 var validationResults = new List<ValidationResult>();

 if (LentOut && string.IsNullOrEmpty(LentTo))

 {

 �validationResults.Add(new ValidationResult("Please enter a

name for Lent To", property));

 }

 return validationResults;

 }

 }

}

Implementing the Validate method of the Interface allows us to provide some

custom validation functionality. In our case, we want to make the Lent To field required

if it is empty and the user has checked the Lent Out check box.

We also need to add the asp-validation-for tag helper to the Video.LentTo input

on the Edit.cshtml Razor page (Listing 3-26).

Chapter 3 Modifying Data

105

Listing 3-26.  Add the Validation Tag Helper to LentTo

<div class="form-group">

 <label asp-for="Video.LentTo"></label>

 <input asp-for="Video.LentTo" class="form-control" />

</div>

If you try to update a video by specifying that you have lent out the video, but do not

provide a name of the person you lent it to, the form validation will display the required

validation message as seen in Figure 3-10.

The custom validation can become much more complex than the simple custom

validation I illustrated. What is important to note, however, is that when the validation

provided out of the box doesn’t meet your needs, you can provide the custom validation

you require using the IValidatableObject Interface.

I have not provided any validation in this book for the other properties on the Video

model. I will leave these for you to play around with. What I do want to do, however, is

highlight the Edit form’s labels.

Looking back to Figures 3-9 and 3-10, you will notice that the labels are rendered on

the web page in the same way the property names are spelled. In other words, the video’s

release date is displayed as ReleaseDate and the Lent Out check box as LentOut and so

on. We can control this behavior once again, by modifying the Video model.

Figure 3-10.  Validating LentTo Field

Chapter 3 Modifying Data

106

You might need to bring in the System.ComponentModel namespace via a using
statement.

In Listing 3-27, you will see the complete Video model code. Above each property

that you want to change the display name of, add the [DisplayName] annotation.

Listing 3-27.  Complete Video Model Code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.ComponentModel.DataAnnotations;

namespace VideoStore.Core

{

 public class Video : IValidatableObject

 {

 public int Id { get; set; }

 [Required, DisplayName("Video Title")]

 public string Title { get; set; }

 [DisplayName("Release Date")]

 public DateTime ReleaseDate { get; set; }

 public MovieGenre Genre { get; set; }

 public double Price { get; set; }

 [DisplayName("Lent Out")]

 public bool LentOut { get; set; }

 [DisplayName("On Loan to")]

 public string LentTo { get; set; }

 �public IEnumerable<ValidationResult> Validate(ValidationContext

validationContext)

 {

 var property = new[] { nameof(LentTo) };

 var validationResults = new List<ValidationResult>();

Chapter 3 Modifying Data

107

 if (LentOut && string.IsNullOrEmpty(LentTo))

 {

 �validationResults.Add(new ValidationResult("Please enter a

name for Lent To", property));

 }

 return validationResults;

 }

 }

}

You can now control exactly how the various properties are displayed on the form.

You can even combine several annotations as seen on the Title property where we

added [Required, DisplayName("Video Title")] in a single line.

Run your web application to see the new display names for your properties on your

Edit form.

�Adding a New Video
Our video store web application would be as useful as a one-legged chicken in a chicken

race without the ability to add additional videos. We have added all the logic to edit an

existing video, but we can’t, as yet, add a new video.

Some folks prefer to create a separate Add page for this purpose, but what you will

find is that much of the logic will be the same as the Edit page’s logic. We can repurpose

the Edit page to act as both an Edit page and an Add page.

To add a new video, I want to add a button to the list of videos, next to the search bar.

This way, if the video that the user searched for doesn’t exist, they can easily just add the

video. Modify the <form> to include the add button as illustrated in Listing 3-28.

Listing 3-28.  The Modified List Page

<form method="get">

 <div class="form-group">

 <div class="input-group">

 <input type="search"

 class="form-control"

 asp-for="SearchQuery" />

Chapter 3 Modifying Data

108

 <button class="btn btn-group">

 <i class="fas fa-search"></i>

 </button>

 <a asp-page="./Edit" class="btn btn-group">

 <i class="fas fa-plus"></i>

 </div>

 </div>

</form>

There is, however, a small catch. When we created the Edit page, we told it that we

will pass through a video ID in the URL. We did this in the @page directive on the Edit.

cshtml page. Therefore, it will only respond to a route that contains a video ID.

To fix this issue, we need to tell the @page directive that the video ID in the route

is an optional value. We, therefore, need to specify the @page directive as @page

"{videoId:int?}" with a question mark after the int to denote that the video ID is

nullable. To put this into context, the Edit.cshtml page needs to look as in Listing 3-29.

Listing 3-29.  The Edit.cshtml Page’s @page Directive

@page "{videoId:int?}"

@model VideoStore.Pages.Videos.EditModel

@{

 ViewData["Title"] = "Edit";

}

<h1>Editing: @Model.Video.Title</h1>

With this bit in place, we also need to modify the OnGet method of our EditModel

class. The code in Listing 3-30 contains the modified OnGet method.

Listing 3-30.  The Modified OnGet Method

public IActionResult OnGet(int? videoId)

{

 Genres = _helper.GetEnumSelectList<MovieGenre>();

 Video = videoId.HasValue

 ? _videoData.GetVideo(videoId.Value)

Chapter 3 Modifying Data

109

 : new Video

 {

 ReleaseDate = DateTime.Now.Date

 };

 �return Video == null ? RedirectToPage("./VideoError", new { message =

"The video does not exist" }) : (IActionResult)Page();

}

Here, we are telling the code that the videoId is a nullable parameter. If that videoId

has a value, then go out to our data service and fetch a video with the specified ID.

If the videoId is null, then instantiate a new instance of the Video and default the

ReleaseDate to the current date. While this takes care of the instance where a user adds

a new video, we need to modify our data service to allow for that addition to be added to

the list of videos (and later on, the database). Let’s do that next.

�Modifying the Data Access Service
Working again from the IVideoData Interface, we need to add a method to add a video

called AddVideo (or whatever you choose) as seen in Listing 3-31.

Listing 3-31.  Modified IVideoData Interface to Allow Add

using System.Collections.Generic;

using VideoStore.Core;

namespace VideoStore.Data

{

 public interface IVideoData

 {

 IEnumerable<Video> ListVideos(string title);

 Video GetVideo(int id);

 Video UpdateVideo(Video videoData);

 Video AddVideo(Video newVideo);

 int Save();

 }

}

Chapter 3 Modifying Data

110

Because we have modified our Interface, we need to provide the implementation in

all classes implementing our Interface which is, in our case, just the TestData class. Add

the method illustrated in Listing 3-32 to the TestData class.

Listing 3-32.  The AddVideo Method in the TestData Class

public Video AddVideo(Video newVideo)

{

 newVideo.Id = _videoList.Max(x => x.Id) + 1;

 _videoList.Add(newVideo);

 return newVideo;

}

When we eventually start working with a real database, the new video ID will

be auto-incremented in the database table. For now, while we are working with the

TestData class, our video IDs are hardcoded in the list of videos. We, therefore, need to

add the line of code newVideo.Id = _videoList.Max(x => x.Id) + 1 to simulate the

incrementing of the video ID in the database. This is a bit of silly, messy code. Its only

purpose is to allow us to be able to test our web application and to simulate the workings

of a real data service.

Once we create our real data service, it too will implement the IVideoData Interface

along with all the required methods. These implementations will look very different from

those in our TestData class.

All that remains for us to do now is to modify the OnPost method of the EditModel

class.

�Modifying the OnPost Method
The last bit we need to do is really simple. If we have a Video.Id that is greater than 0,

then we are updating an existing video. If the Video.Id is 0, then we are adding a new

video.

Listing 3-33.  The Modified OnPost Method

public IActionResult OnPost()

{

 if (ModelState.IsValid)

Chapter 3 Modifying Data

111

 {

 �_ = Video.Id > 0 ? _videoData.UpdateVideo(Video) : _videoData.

AddVideo(Video);

 _ = _videoData.Save();

 return RedirectToPage("./Detail", new { videoId = Video.Id });

 }

 Genres = _helper.GetEnumSelectList<MovieGenre>();

 return Page();

}

The modified OnPost method can be seen in Listing 3-33. Run the web application,

and add a new video. The new video will be added to our Video List, allowing you to edit

it and save the changes.

�Working with TempData
Having repurposed the Edit page to act as an Add page too means that we might need to

change some labels and headings. You might want to remove the text “Editing:” from the

<h1> tag in the Edit.cshtml page.

You might also want to change the text of the Update Video button as well. I will leave

this as homework for you to do, but what I do want to discuss is the notion of TempData.

If I update or add a video, I want the Detail page to respond accordingly with a suitable

message. Think of a message dialog that is displayed in a traditional Windows Forms

application. I want to notify the user that an update or an addition has taken place.

In ASP.NET Core, you can access the TempData for Razor pages (this resides in the

Microsoft.AspNetCore.Mvc.RazorPages namespace) or for Controllers (residing in the

Microsoft.AspNetCore.Mvc namespace).

TempData will store information until that information is read in another request.

This means that once it’s read, it’s dead. You can use the Keep and Peek methods to have

a look at the information without deleting it at the end of the request. The Keep method

does what the name suggests, which is to mark the information in TempData as data that

should be retained. This is, however, not something we will be doing.

As illustrated in Listing 3-34, you will see that I want to decide which message to pass

in my TempData. Before the _videoData.Save() method is called, I perform the same

conditional decision as to when I was deciding whether I should update or add a video.

Chapter 3 Modifying Data

112

That is, if the video has an ID greater than 0, then I must be updating a video. If not, then

I’m adding.

Listing 3-34.  Pass Conditional TempData Message

public IActionResult OnPost()

{

 if (ModelState.IsValid)

 {

 �TempData["CommitMessage"] = Video.Id > 0 ? "Video Updated" : "Video

Added";

 �_ = Video.Id > 0 ? _videoData.UpdateVideo(Video) : _videoData.

AddVideo(Video);

 _ = _videoData.Save();

 return RedirectToPage("./Detail", new { videoId = Video.Id });

 }

 Genres = _helper.GetEnumSelectList<MovieGenre>();

 return Page();

}

I can now go to my DetailModel class and create a property called CommitMessage

that has the [TempData] attribute. You can see this code in Listing 3-35.

Listing 3-35.  The DetailModel Page

public class DetailModel : PageModel

{

 private readonly IVideoData _videoData;

 public Video Video { get; set; }

 [TempData]

 public string CommitMessage { get; set; }

 public DetailModel(IVideoData videoData)

 {

 _videoData = videoData;

 }

Chapter 3 Modifying Data

113

 public IActionResult OnGet(int videoId)

 {

 Video = _videoData.GetVideo(videoId);

 �return Video == null ? RedirectToPage("./VideoError", new { message

= "The video does not exist" }) : (IActionResult)Page();

 }

}

Now that I have a property decorated with the TempData attribute, ASP.NET Core will

read the TempData for the Razor page and see if it contains a key called CommitMessage. It

is important that the property name and the key in the TempData match; otherwise, ASP.

NET Core can’t assign the value stored inside TempData to the property.

So with that change done, all that remains is to check the existence of a value in

TempData and display the message on the Detail.cshtml Razor page. The code illustrated

in Listing 3-36 shows the commit message added just underneath the <h1> video title.

Listing 3-36.  The Detail Razor Page Commit Message

@page "{videoId:int}"

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

}

<h1>@Model.Video.Title</h1>

@if (Model.CommitMessage != null)

{

 <div class="alert alert-info">@Model.CommitMessage</div>

}

<div>

 Catalog ID: @Model.Video.Id

</div>

<div>

 Release Date: @Model.Video.ReleaseDate.ToString("dd MMMM yyyy")

</div>

Chapter 3 Modifying Data

114

<div>

 Genre: @Model.Video.Genre

</div>

<div>

 Price: $@Model.Video.Price

</div>

<div>

 Lent Out: @Html.CheckBoxFor(x => x.Video.LentOut)

</div>

@if (Model.Video.LentOut == true)

{

 <div>

 Lent To: @Model.Video.LentTo

 </div>

}

<a asp-page="./List" class="btn btn-outline-primary">Back to Videos

Now, when you add or update a video, the appropriate message will be displayed on

the Detail Razor page. If you refresh the page, the message will disappear. This is what we

wanted. It is only temporary data.

If you modify the markup that displays the commit message and specify that the

temporary data must be kept, then the result is quite different.

Modify the section of markup in the Detail.cshtml Razor page to tell ASP.NET to

keep the TempData with the key of CommitMessage. The code is illustrated in Listing 3-37.

Listing 3-37.  Keeping TempData

@if (Model.CommitMessage != null)

{

 TempData.Keep("CommitMessage");

 <div class="alert alert-info">@Model.CommitMessage</div>

}

This time, when you see the commit message on the Detail.cshtml Razor page, and

hit the refresh button, the message remains there.

Chapter 3 Modifying Data

115

�Changing the TempData Provider
By default, the provider for TempData is cookie based. You can see this in the browser’s

DevTools (I am using Google Chrome - Figure 3-11). With the line of code TempData.

Keep illustrated in Listing 3-37 in place, add a new video and open up DevTools when

you see the Detail page.

Head on over to the Application tab, and expand the Cookies node under Storage.

There, you will see AspNetCore.Mvc.CookieTempDataProvider listed. You can change

this behavior by enabling the session-based TempData provider instead. We need to do

this in the Startup class for the application.

As illustrated in Listing 3-38, you need to add the extension method AddSessionStat

eTempDataProvider to the AddRazorPages() method. You must also add the line of code

_ = services.AddSession().

Figure 3-11.  The Default Cookie-Based TempData Provider

Chapter 3 Modifying Data

116

Listing 3-38.  The ConfigureServices Method

public void ConfigureServices(IServiceCollection services)

{

 //_ = services.AddScoped<IVideoData, TestData>();

 �_ = services.AddSingleton<IVideoData, TestData>(); // TODO: Change to

scoped

 _ = services.AddRazorPages().AddSessionStateTempDataProvider();

 _ = services.AddSession();

}

From the ConfigureServices method, this is all we need to do. We do however need

to modify the Configure method slightly.

You will notice that I use C# discards throughout my code where applicable. This is
just something I like to do, and it's not necessary for the correct functioning of the
code. If you are not familiar with discards, you can read more about it on Microsoft
Docs at the following link: https://docs.microsoft.com/en-us/dotnet/
csharp/discards.

Modify the Configure method as illustrated in Listing 3-39 by adding the line of code

_ = app.UseSession() before the call to the UseEndpoints extension method.

Listing 3-39.  The Modified Configure Method

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 _ = app.UseDeveloperExceptionPage();

 }

 else

 {

 _ = app.UseExceptionHandler("/Error");

 _ = app.UseHsts();

 }

Chapter 3 Modifying Data

https://docs.microsoft.com/en-us/dotnet/csharp/discards
https://docs.microsoft.com/en-us/dotnet/csharp/discards

117

 _ = app.UseHttpsRedirection();

 _ = app.UseStaticFiles();

 _ = app.UseRouting();

 _ = app.UseAuthorization();

 _ = app.UseSession();

 _ = app.UseEndpoints(endpoints =>

 {

 _ = endpoints.MapRazorPages();

 });

}

Once again, run the web application, add a new video, and open up DevTools when

you see the Detail page.

This time, on the Application tab under the Cookies node under Storage, you will see

that AspNetCore.Session is the provider in use (Figure 3-12).

Figure 3-12.  The Session-Based TempData Provider

Chapter 3 Modifying Data

119
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5_4

CHAPTER 4

EF Core and SQL Server
The ultimate goal of our web application is to work against a real SQL database. Up until

now, we have only been working with our TestData service. You will remember that we

created this service to mimic the workings of a real SQL database, just while we were

busy developing the foundation of our application.

Now, however, it is time to take a look at installing Entity Framework Core and start

working with real data. Before I go into that, let’s pause for a minute and have a look at

what Entity Framework Core is exactly.

�Entity Framework Core
If you have worked with Entity Framework before, this will feel very familiar to you.

Entity Framework Core (or EF Core for short) is the lightweight version of Entity

Framework. It is extensible, open source, and because it is termed “Core,” you know that

it works cross-platform. EF Core also serves as an O/RM. This allows EF Core to

•	 Enable developers to work against a database using .NET objects

•	 Remove the need to write data access code

If you are used to rolling your own when it comes to data access code, then EF Core

might be a bit of a paradigm shift for you. It does make life a lot easier though, however,

some developers hate having to use it. Nevertheless, EF Core is here to stay, and seeing

as it supports many database engines, I doubt that it will be going away anytime soon.

See the list of EF Core database providers at the following link: https://docs.
microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli.

https://doi.org/10.1007/978-1-4842-6828-5_4#DOI
https://docs.microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli
https://docs.microsoft.com/en-us/ef/core/providers/?tabs=dotnet-core-cli

120

The convenience of not having to write a lot of the data access code, having it

generated for you by EF Core, is beneficial. When you use EF Core, the data access is

done using a model. This comprises entity classes and a context object. This represents a

database session.

We will come back to the context object later on, but know that this object allows you

to query and save data. Entity Framework supports the following model development

approaches:

•	 You can generate a model from an existing database.

•	 You can manually create a model to match your database.

•	 Created models can be used to create databases using EF Migrations.

EF Migrations also allow you to update the database when your

model changes.

This is in a nutshell what EF Core is all about. Let’s have a look at installing

EF Core next.

�Install Entity Framework
When we first created our web application, we created the VideoStore.Data project. The

idea was to separate concerns in our solution. This project is where we will be installing

EF Core.

Right-click the VideoStore.Data project, and click the Manage NuGet Packages link

(you can also right-click the Dependencies node).

Chapter 4 EF Core and SQL Server

121

From the Browse tab, search for the Microsoft.EntityFrameworkCore package

(Figure 4-1). The latest version for me is 3.1.9, but for you, it might be different. Secondly,

we need to install a database provider. We will be using SQL Server, so search for and

install the Microsoft.EntityFrameworkCore.SqlServer NuGet package (Figure 4-2).

The last NuGet package we will be installing is the Microsoft.EntityFrameworkCore.

Design NuGet package (Figure 4-3).

Figure 4-1.  Browsing for the Entity Framework Core NuGet Package

Figure 4-2.  EF Core Database Provider

Chapter 4 EF Core and SQL Server

122

It is important to note that you could also have installed the required packages from

the command line using the dotnet add command. Open the Command Prompt, and

type in dotnet -h to see the output in Listing 4-1.

Listing 4-1.  The dotnet Commands

SDK commands:

 add Add a package or reference to a .NET project.

 build Build a .NET project.

 build-server Interact with servers started by a build.

 clean Clean build outputs of a .NET project.

 help Show command line help.

 list List project references of a .NET project.

 msbuild Run Microsoft Build Engine (MSBuild) commands.

 new Create a new .NET project or file.

 nuget Provides additional NuGet commands.

 pack Create a NuGet package.

 publish Publish a .NET project for deployment.

 remove Remove a package or reference from a .NET project.

 restore Restore dependencies specified in a .NET project.

 run Build and run a .NET project output.

 sln Modify Visual Studio solution files.

Figure 4-3.  EF Core Design-Time Components

Chapter 4 EF Core and SQL Server

123

 store Store specified assemblies in the runtime package store.

 test �Run unit tests using test runner specified in a .NET

project.

 tool Install or manage tools that extend the .NET experience.

 vstest Run Microsoft Test Engine (VSTest) commands.

Additional commands from bundled tools:

 dev-certs Create and manage development certificates.

 fsi Start F# Interactive / execute F# scripts.

 sql-cache SQL Server cache command-line tools.

 user-secrets Manage development user secrets.

 watch �Start a file watcher that runs a command when files

change.

Have a look at the following link to see more about the dotnet add command:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package.

Lastly, if you open the .csproj file of VideoStore.Data, you will see the package

references we just added (Listing 4-2).

Listing 4-2.  VideoStore.Data csproj File

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netcoreapp3.1</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 �<PackageReference Include="Microsoft.EntityFrameworkCore"

Version="3.1.9" />

 �<PackageReference Include="Microsoft.EntityFrameworkCore.Design"

Version="3.1.9">

 <PrivateAssets>all</PrivateAssets>

 �<IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 </PackageReference>

Chapter 4 EF Core and SQL Server

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package

124

 �<PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"

Version="3.1.9" />

 </ItemGroup>

 <ItemGroup>

 <ProjectReference Include="..\VideoStore.Core\VideoStore.Core.csproj" />

 </ItemGroup>

</Project>

The addition of EF Core to the VideoStore.Data project is all we need to do right

now. The next task on our list is to look at DbContext.

�Implement DbContext
An instance of a DbContext will represent a session with the database. This will allow us

to save and query entity instances. What we will be doing is to create a class and derive it

from DbContext.

This class will contain properties of type DbSet<T> that represent each entity

in the model. Right-click the VideoStore.Data project, and add a new class called

VideoDbContext to the project.

Be sure to add the Microsoft.EntityFrameworkCore and VideoStore.Core
namespaces to your class.

With your VideoDbContext class created, inherit the class from DbContext as

illustrated in Listing 4-3.

Listing 4-3.  The VideoDbContext Class

namespace VideoStore.Data

{

 public class VideoDbContext : DbContext

 {

 }

}

Chapter 4 EF Core and SQL Server

125

Our application works with videos, so I know that I will need to add a property to the

VideoDbContext class of type DbSet<Video>. The DbSet tells the Entity Framework that I

want to query, add, delete, and update videos.

While Entity Framework might understand what DbSet is telling it, it might not
immediately be obvious to a developer. I agree that the name DbSet does not make
the purpose of this class obvious. Whenever I am faced with trying to figure out
what a particular class or method does, I take a look at the metadata. To do this,
click the DbSet as seen in Listing 4-4 and press F12. You can now see exactly
what this class does. The code comments will definitely help you understand more.

Modify the VideoDbContext class as illustrated in Listing 4-4.

Listing 4-4.  The Videos Property Added to VideoDbContext

using Microsoft.EntityFrameworkCore;

using VideoStore.Core;

namespace VideoStore.Data

{

 public class VideoDbContext : DbContext

 {

 public DbSet<Video> Videos { get; set; }

 }

}

We can now use this property on the VideoDbContext to work with our database.

�Specify Database Connection Strings
The next thing we need to do is add some code that will tell the Entity Framework what

database we want to use. We will be using LocalDB. It is installed when you install Visual

Studio (I am using Visual Studio 2019) and is perfect for what we want to do right now.

Chapter 4 EF Core and SQL Server

126

To check if LocalDB is installed, run the command in the Command Prompt as seen

in Listing 4-5.

Listing 4-5.  Check If LocalDb Is Installed

Sqllocaldb info

You should see the instances of LocalDB listed in the Command Prompt as

illustrated in Figure 4-4.

We only have a single instance of LocalDB which is MSSQLLocalDB, but if you work

with Umbraco, for example, you might have additional LocalDB instances.

In our application, however, we will be using the built-in LocalDB database, and that

is what is listed in the output displayed in Figure 4-4. To get more information about the

MSSQLLocalDB instance, run the command as illustrated in Listing 4-6.

Listing 4-6.  Getting Additional Info for MSSQLLocalDB

Sqllocaldb info MSSQLLocalDB

This will list some more details about the LocalDB instance (in this case

MSSQLLocalDB) currently on your machine (Figure 4-5).

Figure 4-4.  The LocalDB Instances Listed

Chapter 4 EF Core and SQL Server

127

As you could have guessed, adding -? after sqllocaldb command in the Command

Prompt will list the available commands you can run. These are seen in Listing 4-7.

Listing 4-7.  The Available LocalDB Commands

C:\WINDOWS\system32>sqllocaldb -?

Microsoft (R) SQL Server Express LocalDB Command Line Tool

Version 13.0.1601.5

Copyright (c) Microsoft Corporation. All rights reserved.

Usage: SqlLocalDB operation [parameters...]

Operations:

 -?

 Prints this information

 create|c ["instance name" [version-number] [-s]]

 Creates a new LocalDB instance with a specified name and version

 If the [version-number] parameter is omitted, it defaults to the

 latest LocalDB version installed in the system.

 -s starts the new LocalDB instance after it's created

 delete|d ["instance name"]

 Deletes the LocalDB instance with the specified name

Figure 4-5.  Viewing More Information on MSSQLLocalDB

Chapter 4 EF Core and SQL Server

128

 start|s ["instance name"]

 Starts the LocalDB instance with the specified name

 stop|p ["instance name" [-i|-k]]

 Stops the LocalDB instance with the specified name,

 after current queries finish

 -i request LocalDB instance shutdown with NOWAIT option

 -k kills LocalDB instance process without contacting it

 share|h ["owner SID or account"] "private name" "shared name"

 Shares the specified private instance using the specified shared name.

 �If the user SID or account name is omitted, it defaults to current

user.

 unshare|u ["shared name"]

 Stops the sharing of the specified shared LocalDB instance.

 info|i

 Lists all existing LocalDB instances owned by the current user

 and all shared LocalDB instances.

 info|i "instance name"

 Prints the information about the specified LocalDB instance.

 versions|v

 Lists all LocalDB versions installed on the computer.

 trace|t on|off

 Turns tracing on and off

SqlLocalDB treats spaces as delimiters. It is necessary to surround

instance names that contain spaces and special characters with quotes.

For example:

 SqlLocalDB create "My LocalDB Instance"

The instance name can sometimes be omitted, as indicated above, or

specified as "". In this case, the reference is to the default LocalDB

instance "MSSQLLocalDB".

Chapter 4 EF Core and SQL Server

129

You can also see the LocalDB instance in Visual Studio by going to the View menu

and clicking the SQL Server Object Explorer menu. You can also press Ctrl+\,

Ctrl+S to open SQL Server Object Explorer. This instance may contain one or more

databases.

It is this LocalDB instance that we will use during development, but we need to

create a connection to it inside our Video Store application. The place to do it is in

the appsettings.json file. You will remember that we added the page title for the

Video List page here. This time, all we are going to do is to add a new section called

ConnectionStrings as seen in Listing 4-8.

Listing 4-8.  Connection Strings Added to appsettings.json

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "VideoListPageTitle": "Video Store - Videos List",

 "ConnectionStrings": {

 "VideoConn": "Data Source=(localdb)\\MSSQLLocalDB;Initial

Catalog=VideoStore;Integrated Security=True;"

 }

}

The ConnectionStrings section is purposefully plural because this alludes to the

fact that you can add multiple connection strings to this configuration section. Inside

the ConnectionStrings section, we define key and value pairs for the various database

connections that we want to use.

For our database connection, we have simply added a key called VideoConn and a

value that defines the connection to our LocalDB database.

Chapter 4 EF Core and SQL Server

130

One thing to note, however, is that the Initial Catalog (which specifies our database)

specifies a database called VideoStore. This database doesn’t exist yet, but that’s okay for

now. We now need a way to tell the DbContext about the connection to the database we want

to use. We do this in the ConfigureServices method in the Startup.cs class.

You must add the Microsoft.EntityFrameworkCore namespace to the Startup class.

Change the ConfigureServices method in the Startup class as illustrated in

Listing 4-9.

Listing 4-9.  The ConfigureServices Method

public void ConfigureServices(IServiceCollection services)

{

 services.AddDbContextPool<VideoDbContext>(dbContextOptns =>

 {

 dbContextOptns.UseSqlServer(

 Configuration.GetConnectionString("VideoConn"));

 });

 _ = services.AddSingleton<IVideoData, TestData>(); �// TODO: Change to

scoped

 _ = services.AddRazorPages().AddSessionStateTempDataProvider();

 _ = services.AddSession();

}

By bringing in the Entity Framework Core namespace, we can use the UseSqlServer

method to tell the Entity Framework about the DbContext that I’m using in my

application. We are also telling it to use DbContext pooling. This allows for increased

throughput because DbContext instances are reused instead of having new instances

created for every request.

Important to note is that the key we used for our connection string in the
appsettings.json file must match the string passed to the GetConnectionString
method.

Chapter 4 EF Core and SQL Server

131

Now that we have registered the DbContext as a service in the IServiceCollection,

we need to make a change to the VideoDbContext class itself. We need to tell it about

the connection string we are using as well as any other options specified with the

DbContextOptionsBuilder.

Listing 4-10.  The Modified VideoDbContext Class

using Microsoft.EntityFrameworkCore;

using VideoStore.Core;

namespace VideoStore.Data

{

 public class VideoDbContext : DbContext

 {

 �public VideoDbContext(DbContextOptions<VideoDbContext>

dbContextOptns) : base(dbContextOptns)

 {

 }

 public DbSet<Video> Videos { get; set; }

 }

}

We do this by adding a constructor to the VideoDbContext class and passing the

DbContextOptions as seen in Listing 4-10. Because the VideoDbContext class inherits

from DbContext, we simply need to pass the DbContextOptions through to the base

class. Looking at the metadata for the DbContext class (Listing 4-11), we can see that it

takes the DbContextOptions as a parameter in its constructor.

Listing 4-11.  The DbContext Metadata

//

// Summary:

// Initializes a new instance of the

// Microsoft.EntityFrameworkCore.DbContext class

// using the specified options. The Microsoft.EntityFrameworkCore

// .DbContext.OnConfiguring(Microsoft.EntityFrameworkCore

// .DbContextOptionsBuilder) method will still be called to

Chapter 4 EF Core and SQL Server

132

// allow further configuration of the options.

//

// Parameters:

// options:

// The options for this context.

public DbContext([NotNullAttribute] DbContextOptions options);

//

// Summary:

// Initializes a new instance

// of the Microsoft.EntityFrameworkCore.DbContext class.

// The Microsoft.EntityFrameworkCore.DbContext

// .OnConfiguring(Microsoft.EntityFrameworkCore

// .DbContextOptionsBuilder)

// method will be called to configure the database

// (and other options) to be used for this context.

protected DbContext();

What remains now is for us to use database migrations to create the database we

specified in the connection string earlier.

�Working with Database Migrations
Working with migrations can be easy, and it can be somewhat tricky. I know that

this seems a bit contradictory, but hear me out. I am going to add migrations to the

VideoStore project using the command line. I had a few hiccups while setting this up,

but I’ll outline what caused these issues next.

What I want to do is see if I can run the dotnet ef dbcontext info command from

the command line as illustrated in Listing 4-12.

Listing 4-12.  Getting the DbContext Info

dotnet ef dbcontext info

I should get an error telling me that it can’t create the VideoDbContext, and this is

expected.

Chapter 4 EF Core and SQL Server

133

If you receive an error stating that the dotnet tool can’t be found when trying to
run dotnet ef dbcontext info, then you might need to install it first. Run
dotnet tool install --global dotnet-ef. For more, see the following
article: https://docs.microsoft.com/en-us/dotnet/core/tools/
dotnet-tool-install.

The reason for this is because the VideoStore.Data project is a separate

project. It does not know anything about the Startup.cs class that contains the

ConfigureServices method. Remember that we modified this in Listing 4-9 earlier in

the chapter.

We, therefore, need to tell .NET Core where the startup project is for our solution.

We do this by specifying -s and giving it the path to the startup project’s csproj file

(Listing 4-13).

.NET Core now knows about the startup project and will be able to find the

connection string and DbContext class.

Listing 4-13.  Telling .NET Core Where the Startup Project Is

dotnet ef dbcontext info -s ..\VideoStore\VideoStore.csproj

Running the command shown in Listing 4-13 will produce an output similar to what

is illustrated in Listing 4-14.

Listing 4-14.  The Expected Output

Build started...

Build succeeded.

Provider name: Microsoft.EntityFrameworkCore.SqlServer

Database name: VideoStore

Data source: (localdb)\MSSQLLocalDB

Options: MaxPoolSize=128

It is here that I also ran into a strange error. It was, unfortunately, as a result of my

ignorance. When trying to run the command in Listing 3-13 earlier, I received an error

stating that the startup project didn’t include Microsoft.EntityFrameworkCore.Design

NuGet package (Figure 4-6).

Chapter 4 EF Core and SQL Server

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-tool-install
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-tool-install

134

I went ahead and installed that from NuGet and tried adding the migrations again.

This time I received this error in Listing 4-15.

Listing 4-15.  Create Method Error

Method 'Create' in type 'Microsoft.EntityFrameworkCore.SqlServer.Query.

Internal.SqlServerSqlTranslatingExpressionVisitorFactory' from assembly

'Microsoft.EntityFrameworkCore.SqlServer, Version=3.1.9.0, Culture=neutral,

PublicKeyToken=adb9793829ddae60' does not have an implementation.

To cut to the chase, this was as a result of a version mismatch between the

EntityFrameworkCore NuGet packages in my VideoStore.Data project and my startup

project. You need to ensure that the versions match (as seen in Figure 4-7).

In my case, the version was 3.1.9, but it might be different for you.

It is usually a good idea to ensure that the versions of similar NuGet packages

between projects match; otherwise, you could end up chasing an error that wastes time

and frustrates you no end.

Figure 4-6.  EntityFrameworkCore.Design Missing

Chapter 4 EF Core and SQL Server

135

Finally, we are ready to add the migration to our data project. Migrations allow us to

keep our database in sync with our data models as they are modified. Migrations work as

follows:

•	 When a data model changes, you can add a migration to your project

that will describe the changes required to keep the database in sync

with your project. What EF Core does is compare the current data

model to a snapshot of the old model and figure out the differences.

Migration files are then generated.

•	 EF Core will then apply generated migrations to the database and

record this history in a table. This allows you to see which migrations

have been applied and which haven’t.

For more information on migrations, be sure to check out the following article

on Microsoft Docs here: https://docs.microsoft.com/en-us/ef/core/managing-

schemas/migrations/?tabs=dotnet-core-cli.

Chapter 4 EF Core and SQL Server

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/?tabs=dotnet-core-cli
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/?tabs=dotnet-core-cli

136

Let’s have a look at some of the options available to us when running dotnet ef from

the command line.

If you have a look at the output as illustrated in Listing 4-16, you will notice that

migrations are one of the options.

Figure 4-7.  Ensure the Same EntityFrameworkCore Versions

Chapter 4 EF Core and SQL Server

137

Listing 4-16.  The dotnet ef Command Output

 _/__

 ---==/ \\

 ___ ___ |. \|\

 | __|| __| |) \\\

 | _| | _| _/ | //|\\

 |___||_| / \\\/\\

Entity Framework Core .NET Command-line Tools 5.0.0

Usage: dotnet ef [options] [command]

Options:

 --version Show version information

 -h|--help Show help information

 -v|--verbose Show verbose output.

 --no-color Don't colorize output.

 --prefix-output Prefix output with level.

Commands:

 database Commands to manage the database.

 dbcontext Commands to manage DbContext types.

 migrations Commands to manage migrations.

Use "dotnet ef [command] --help" for more information about a command.

Go ahead and run dotnet ef migrations from the command line, and inspect the

output as illustrated in Listing 4-17.

Listing 4-17.  The dotnet ef migrations Command Output

Usage: dotnet ef migrations [options] [command]

Options:

 -h|--help Show help information

 -v|--verbose Show verbose output.

 --no-color Don't colorize output.

 --prefix-output Prefix output with level.

Chapter 4 EF Core and SQL Server

138

Commands:

 add Adds a new migration.

 list Lists available migrations.

 remove Removes the last migration.

 script Generates a SQL script from migrations.

Use "migrations [command] --help" for more information about a command

Here, you will see that we can list all the migrations, remove them, add them, or

generate a SQL script from our migrations. In our case, for now, we want to add a new

migration.

Run the command as illustrated in Listing 4-18 to add a new migration to our

VideoStore.Data project.

Listing 4-18.  Add a New Migration

dotnet ef migrations add 20201114a -s ..\VideoStore\VideoStore.csproj

As before, I am specifying the startup project, but I have also specified a name for the

migration file that needs to be generated.

I called my migration file 20201114a as the date and a (denoting the first
migration). This is, however, slightly unnecessary as the migration file does include
the date. I just prefer to add this to the migration file name, but you can name your
migration anything that makes sense to you.

After the migration has been added, the output in your Console Window should be

as illustrated in Listing 4-19.

Listing 4-19.  Migration Added

Build started...

Build succeeded.

Done. To undo this action, use 'ef migrations remove'

Going back to Visual Studio, you will notice that .NET Core has added a Migrations

folder to your VideoStore.Data project. Inside that folder, you will find your newly

added migration (Figure 4-8).

Chapter 4 EF Core and SQL Server

139

Opening the file in Visual Studio (Listing 4-20), you will see that it simply creates

a table called Videos. This is because we have a data model called Video in the

VideoStore.Core project.

Listing 4-20.  The Generated Migration File

using System;

using Microsoft.EntityFrameworkCore.Migrations;

namespace VideoStore.Data.Migrations

{

 public partial class _20201114a : Migration

 {

 protected override void Up(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.CreateTable(

 name: "Videos",

 columns: table => new

Figure 4-8.  Migrations Added to Visual Studio

Chapter 4 EF Core and SQL Server

140

 {

 Id = table.Column<int>(nullable: false)

 .Annotation("SqlServer:Identity", "1, 1"),

 Title = table.Column<string>(nullable: false),

 ReleaseDate = table.Column<DateTime>(nullable: false),

 Genre = table.Column<int>(nullable: false),

 Price = table.Column<double>(nullable: false),

 LentOut = table.Column<bool>(nullable: false),

 LentTo = table.Column<string>(nullable: true)

 },

 constraints: table =>

 {

 table.PrimaryKey("PK_Videos", x => x.Id);

 });

 }

 protected override void Down(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.DropTable(

 name: "Videos");

 }

 }

}

The EF Core migrations saw that there does not exist a table called Videos in the

database and generated the code that will create the table for us.

Thinking back to Listing 4-16, you will remember that one of the dotnet ef

commands was database. From the command line (while still being in the

VideoStore.Data project), run the command as illustrated in Listing 4-21 to create the

database for us.

Listing 4-21.  Creating the Database

dotnet ef database update -s ..\VideoStore\VideosStore.csproj

For a few seconds, after the command is run, you will not see much in the

Console output. When the process is complete, you will see the output as illustrated

in Listing 4-22.

Chapter 4 EF Core and SQL Server

141

Listing 4-22.  Database Creation Completed

Build started...

Build succeeded.

Done.

We now have a database created for us on our MSSQLLocalDb database instance.

Opening up SQL Server Object Explorer in Visual Studio, you will see that the database

has been created (Figure 4-9).

Expanding the Tables folder, you will see the Videos table that was created for us.

Figure 4-9.  The Database in SQL Server Object Explorer

Chapter 4 EF Core and SQL Server

142

You can open SQL Server Object Explorer in Visual Studio by going to the View
menu and clicking SQL Server Object Explorer or by holding down Ctrl+\,
Ctrl+S. Not the most obvious keyboard shortcut, but there it is.

Remember earlier in this chapter, when I said that EF Core will record applied

migrations in a history table? You can see that table just above the Videos table, called

_EFMigrationsHistory. Right-click the table, and select View Data. You will see a history

of migrations, with the one we just added as the only record in the table (Figure 4-10).

We have now successfully created a database to work against. We are finally ready to

switch gears inside of our application. We can now start moving from using the TestData

service to using a real data access service.

�Implement a New Data Access Service
Inside Visual Studio, create a new class in your VideoStore.Data project (Figure 4-11)

called SQLData.

Figure 4-10.  The History Table Data

Chapter 4 EF Core and SQL Server

143

Make this class implement the IVideoData Interface, and allow Visual Studio to

implement the Interface. We now need to add implementations for all the methods

specified in the implemented IVideoData Interface.

Take note that you will need to include the System.Linq namespace.

You can see these implementations in Listing 4-23. Using Entity Framework results

in less code in some places. Where possible, I have used an expression body for methods

as well as the constructor. You are welcome to change this code to use body blocks, but I

find expression-bodied members easier to read.

Listing 4-23.  The New SQLData Class Implementing IVideoData

using Microsoft.EntityFrameworkCore;

using System.Collections.Generic;

using System.Linq;

using VideoStore.Core;

Figure 4-11.  The New SQLData Class

Chapter 4 EF Core and SQL Server

144

namespace VideoStore.Data

{

 public class SQLData : IVideoData

 {

 private readonly VideoDbContext _database;

 public SQLData(VideoDbContext database) => _database = database;

 public Video AddVideo(Video newVideo)

 {

 _ = _database.Add(newVideo);

 return newVideo;

 }

 public Video GetVideo(int id) => _database.Videos.Find(id);

 �public IEnumerable<Video> ListVideos(string title) => _database.

Videos

 .Where(x => string.IsNullOrEmpty(title)

 || x.Title.StartsWith(title))

 .OrderBy(x => x.Title);

 public int Save() => _database.SaveChanges();

 public Video UpdateVideo(Video videoData)

 {

 var entity = _database.Videos.Attach(videoData);

 entity.State = EntityState.Modified;

 return videoData;

 }

 }

}

Of particular interest, you will notice that I bring in my VideoDbContext via the class

constructor and save it to a private field called _database. The AddVideo, GetVideo,

and ListVideo methods are self-explanatory, but the UpdateVideo needs to set the

EntityState to Modified. This tells the Entity Framework that something on the Video

entity has changed.

Chapter 4 EF Core and SQL Server

145

All that remains for us to do is to swap out the data service in the ConfigureServices

method in the Startup.cs class.

�Changing the Data Access Service Registration
By changing the data access service registration, we are telling the services collection

that whenever something in the application wants to use IVideoData, provide it SQLData.

The change in the ConfigureServices method is small and quick. You can see that

change in Listing 4-24.

Listing 4-24.  The Modified Data Access Service Registration

public void ConfigureServices(IServiceCollection services)

{

 _ = services.AddDbContextPool<VideoDbContext>(dbContextOptns =>

 {

 _ = dbContextOptns.UseSqlServer(

 Configuration.GetConnectionString("VideoConn"));

 });

 _ = services.AddScoped<IVideoData, SQLData>();

 _ = services.AddRazorPages().AddSessionStateTempDataProvider();

 _ = services.AddSession();

}

We have also defined it to use a scoped lifetime. With everything added, we can now

run the application, and we will see no videos listed in our Video List.

This is because we have swapped out the service to use the SQL database, and the

Videos table is currently empty. To add a new video, click the add button and add a new

video. After adding the new video, return to the list of videos to see the newly added

entry (Figure 4-12).

Chapter 4 EF Core and SQL Server

146

I know some of you are reeling in horror because I added The Lord of the Rings as
an action movie. Seeing The Lord of the Rings as a trilogy, the title should probably
also change. Currently, we can’t delete any videos from the list. I will therefore
leave that up to you to implement on the IVideoData Interface and provide the
implementation for it on the SQLData class.

With the newly added video listed in our list of videos, let’s go and look at the data in

the database table.

In the Videos table of our VideoStore database, you will see the newly added video

(Figure 4-13).

Figure 4-12.  New Video Added to SQL Database

Chapter 4 EF Core and SQL Server

147

This is the power of using interfaces. We have decoupled our data access service

and allowed it to implement the IVideoData Interface instead. We can now create a

new class, for example, that needs to generate a JSON file with video data. Sure, this will

require a lot of string manipulation and probably isn’t the best place for storing our video

data, but the concept is sound. As long as our data service (any data service) implements

the IVideoData Interface, we will be able to inject it into our services collection in the

ConfigureServices method.

We will also easily be able to swap out the service for a different one, should the

need arise.

Figure 4-13.  The Added Video in the SQL Table

Chapter 4 EF Core and SQL Server

149
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5_5

CHAPTER 5

Working with Razor Pages
In this chapter, you will learn about working with the UI. Here, we will see

how _ViewImports and _ViewStart files work. We will look at partial views and

ViewComponents and see what sections in Razor pages can do. The most important

thing to realize is that you don’t have to be a whizz kid with UI design to create a nice

looking, user-friendly UI.

With Bootstrap and a little bit of jQuery, developers can create functional,

responsive, and great-looking web UIs for their applications.

�Using Sections in Your Razor Pages
If you think back to ASP.NET Master Pages, you will have an idea of what the _Layout.

cshtml page (Figure 5-1) is used for. By convention, this page starts with an underscore.

It is used to define the structure of your pages and is broken up into a header, body, and

footer. The abbreviated code listing for the _Layout.cshtml page is illustrated in Listing 5-1.

Listing 5-1.  The _Layout.cshtml Page

<!DOCTYPE html>

<html lang="en">

<head>

 @* Meta Tags and CSS *@

</head>

<body>

 <header>

 @* Navigation *@

 </header>

https://doi.org/10.1007/978-1-4842-6828-5_5#DOI

150

 <div class="container">

 <main role="main" class="pb-3">

 @RenderBody()

 </main>

 </div>

 <footer class="border-top footer text-muted">

 @* Footer *@

 </footer>

 @* Scripts applied across all pages *@

 @RenderSection("Scripts", required: false)

</body>

</html>

The _Layout page is usually found in the Shared folder by convention.

Chapter 5 Working with Razor Pages

151

Let’s have a look at the different areas in the _Layout page.

�Meta Tags and CSS
Meta tags and links to CSS files are added to the <head> tags on a web page. It is here that

you would add links to the minified Bootstrap CSS or your custom CSS files, for example.

Figure 5-1.  The _Layout.cshtml Page

Chapter 5 Working with Razor Pages

152

�Navigation
The navigation is usually found in the <header> tag of the web page. It is here that we

modified the navigation to add the link to the Videos page.

�@RenderBody
The _Layout.cshtml page contains a @RenderBody section by default. Wherever the

@RenderBody is found, the contents of the view will be rendered in it. This means

that the contents of the List.cshtml or the Edit.cshtml or any other view are

rendered here.

�Footer
The copyright notice or any other markup can be added to the <footer> section. Some

sites include a footer menu or contact information.

�Scripts Applied Across All Pages
The links to the scripts you define below the <footer> will be applied to all pages on the

site. More accurately, these scripts will apply to every view that uses this specific layout

page. Links to scripts such as minified jQuery files can usually be found here.

�@RenderSection
Layouts can call one or more sections by using @RenderSection in the markup. The nice

thing about using @RenderSection is that you can specify whether it is required or not. In

Listing 5-1, you will notice that the Scripts section is not required. Open up the List.

cshtml page, and add the code in Listing 5-2 at the end of the page.

Chapter 5 Working with Razor Pages

153

Listing 5-2.  Added Scripts Section to List Page

@section Scripts {

 <script>

 $(document).ready(function () {

 alert("I am a script alert");

 });

 </script>

}

Notice that the name of the section, Scripts, must match the name supplied in the @

RenderSection call. Run your web application, and open the Video List page. You should

see a pop-up displayed as illustrated in Figure 5-2.

From the list of videos, click one to view the details. When the Detail page loads, no

script is displayed. This is because no Scripts section exists on the Detail.cshtml page,

and we have told the _Layout.cshtml file that the Scripts section is not required.

Modify the @RenderSection on the _Layout.cshtml page as illustrated in Listing 5-3.

Listing 5-3.  Modified RenderSection

@RenderSection("Scripts", required: true)

If you run your web app again, you will receive an error because you have told ASP.

NET Core that the Scripts section is mandatory, but you have not included a Scripts

section as illustrated in Listing 5-2 on every page on your site.

Figure 5-2.  The Script Alert

Chapter 5 Working with Razor Pages

154

This is, in essence, how you can render sections in your web application. The @

RenderSection isn’t just good for scripts. It can contain markup too. Go back to the

_Layout.cshtml page, and add the following code as illustrated in Listing 5-4 just below

the closing </header> tag.

Listing 5-4.  Notification Section

@RenderSection("Notification", required: false)

Switch back to your List.cshtml page, and add the code illustrated in Listing 5-5 to

the bottom of the page.

Listing 5-5.  Notification Section

@section Notification {

<div class="row">

 <div class="col-md-12 alert alert-info">

 This is a notification

 </div>

</div>

}

Run the web application again, and have a look at the Video List page. You will see

the notification displayed at the top of the page below the navigation (Figure 5-3).

Chapter 5 Working with Razor Pages

155

Interesting to note is that while the markup was added to the bottom of the List.

cshtml page, it did not affect where the markup was displayed on the rendered page.

The Notification section is displayed exactly where the @RenderSection was

positioned on the _Layout.cshtml page. Sections, therefore, allow you to easily plug in

additional markup or logic into your Razor pages. This allows you to easily structure your

page elements and organize where they should go.

�What Are _ViewImports and _ViewStart Files?
So far, we have spoken a bit about layout pages. At the beginning of this chapter, we said

that thinking back to ASP.NET Master Pages will give you an idea of what the _Layout.

cshtml page is used for. It is applied to all your views, and in our sample application, this

would be the pages we created for our application.

How exactly does each page (or view) know to use the _Layout.cshtml page? This is

where the _ViewStart.cshtml page comes into play (Figure 5-4).

Figure 5-3.  The Displayed Notification Section

Chapter 5 Working with Razor Pages

156

By default, before a page is rendered in your web application, ASP.NET Core will

check the _ViewStart page to see what layout page it should apply. You can see the

markup for the _ViewStart page in Listing 5-6 specifies that the application must use the

_Layout page when rendering a page.

Listing 5-6.  The _ViewStart Markup

@{

 Layout = "_Layout";

}

Figure 5-4.  The _ViewStart and _ViewImports Pages

Chapter 5 Working with Razor Pages

157

What if you need to apply a different layout for a particular page? Well, as it turns out,

you can control exactly what layout page your view uses.

�Specifying a Different Layout Page
To test this, create a new Razor page without a Page Model in your Shared folder

(Figure 5-5). Call this page _LayoutSpecial, and just copy the markup from the _Layout

page and paste it into the _LayoutSpecial page.

The reason for using a different layout page is because we want to structure a specific

page differently from the default. So to make the _LayoutSpecial page different, I just

added a heading on the layout page in the <header> section as seen in Listing 5-7.

Figure 5-5.  The Newly Added _LayoutSpecial Page

Chapter 5 Working with Razor Pages

158

Listing 5-7.  Modified _LayoutSpecial Page

<header>

 �<nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-

white border-bottom box-shadow mb-3">

 <div class="container">

 �

VideoStore

 �<button class="navbar-toggler" type="button" data-

toggle="collapse" data-target=".navbar-collapse" aria-

controls="navbarSupportedContent"

 �aria-expanded="false" aria-label="Toggle

navigation">

 </button>

 �<div class="navbar-collapse collapse d-sm-inline-flex flex-sm-

row-reverse">

 <ul class="navbar-nav flex-grow-1">

 �<li class="nav-item"><a class="nav-link text-dark"

asp-area="" asp-page="/Index">Home

 �<li class="nav-item"><a class="nav-link text-dark"

asp-area="" asp-page="/Videos/List">Videos

 �<li class="nav-item"><a class="nav-link text-dark"

asp-area="" asp-page="/Privacy">Privacy

 </div>

 </div>

 </nav>

 <div class="col-md-12 alert alert-info">

 <h1>

 This is the Special Layout Page

 </h1>

 </div>

</header>

Chapter 5 Working with Razor Pages

159

You will notice that it still has all the navigation from the _Layout page, but that it

now also includes this <h1> element.

Use cases for a different layout page will differ, but consider the requirement to
apply a different layout based on whether the user is logged in or not. Perhaps you
need to apply a notification banner to a specific page only.

Now let’s apply this _LayoutSpecial page to the Detail view. Open up the Detail.

cshtml file, and add the code as illustrated in Listing 5-8 to the Detail page.

Listing 5-8.  Specifying a Different Layout Page

@page "{videoId:int}"

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

 Layout = "_LayoutSpecial";

}

When ASP.NET Core finds the Layout = "_LayoutSpecial" in the header of the

Detail page, it then goes out and looks for that layout page in the Shared folder. It

then applies that specific layout only to the Detail page. If you run the application and

navigate to the Detail page, you will see the heading applied as illustrated in Figure 5-6.

Chapter 5 Working with Razor Pages

160

So the _ViewStart page plays an important role in ASP.NET Core. In the preceding

example, it specified the layout page to apply to all views in the application. We saw

how we can override the default layout, by specifying a different layout for a particular

page. This means that if we need to run code before each view, we need to place it in

the _ViewStart file. By convention, _ViewStart is located in the Pages folder and is

hierarchical. In other words, if another _ViewStart is found in a subfolder, it will be run

after the _ViewStart in the root folder.

Note that some name the Pages folder Views. Whatever your preference, the term
page and view are used interchangeably.

Another file to take note of is the _ViewImports file. Let’s have a look at what it does

in a bit more detail.

Figure 5-6.  The New Layout Applied to the Detail Page

Chapter 5 Working with Razor Pages

161

�Creating a Custom TagHelper
The code for the _ViewImports file is illustrated in Listing 5-9.

Listing 5-9.  The _ViewImports File

@using VideoStore

@namespace VideoStore.Pages

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

This file uses Razor directives to import namespaces that need to be shared by other

views. The following directives are supported in the _ViewImports file:

•	 @addTagHelper

•	 @removeTagHelper

•	 @tagHelperPrefix

•	 @using

•	 @model

•	 @inherits

•	 @inject

Like the _ViewStart file, the _ViewImports file is hierarchical, and if multiple

_ViewImports.cshtml files are found in that hierarchy, the directives are combined as

follows:

•	 All @addTagHelper and @removeTagHelper directives are run in

order.

•	 The closest @tagHelperPrefix to the view will override any others.

•	 The closest @model to the view will override any others.

•	 The closest @inherits to the view will override any others.

•	 All @using directives are included, and any duplicates are ignored.

•	 For every @inject property, the closest one to the view will override

any others with the same property names.

Chapter 5 Working with Razor Pages

162

The _ViewImports file is also the place where you will define any custom tag helpers

you may create. Have a look at the Detail page markup again (Listing 5-10).

Listing 5-10.  The Price Markup

<div>

 Price: $@Model.Video.Price

</div>

Here, we can see that the currency is hardcoded into the markup of the page. This is

not something we want to do and generally does not scale well. Let’s create a custom tag

helper to get the currency as defined by the culture name we pass it.

To do this, we are going to do the following:

•	 Add a folder for our custom tag helpers.

•	 Add a class for the tag helper for video price.

•	 Specify our custom tag helper in the _ViewImports file.

You can see that we have added a new folder to the solution called TagHelpers

(Figure 5-7). We have also added a class called PriceTagHelper to the TagHelpers folder.

This class will tell the compiler that it should match all videoPrice elements and

look for attributes that match video-price and culture-name. The class will then get the

currency symbol for the culture name you pass it and output the price with the correct

currency symbol.

Chapter 5 Working with Razor Pages

163

Start by creating a class named PriceTagHelper in the TagHelpers folder. You can see

the complete code listing illustrated in Listing 5-11.

Listing 5-11.  The PriceTagHelper Class

using Microsoft.AspNetCore.Razor.TagHelpers;

using System.Globalization;

namespace VideoStore.TagHelpers

{

 [HtmlTargetElement("videoPrice")]

 public class PriceTagHelper : TagHelper

 {

 public double VideoPrice { get; set; }

 public string CultureName { get; set; }

 public string Label { get; set; }

Figure 5-7.  Add the TagHelper Folder and Class

Chapter 5 Working with Razor Pages

164

 �public override void Process(TagHelperContext context,

TagHelperOutput output)

 {

 var ri = new RegionInfo(CultureName);

 var currencySymbol = ri.CurrencySymbol;

 output.TagName = "div";

 var price = $"{Label}{currencySymbol}{VideoPrice}";

 _ = output.Content.SetContent(price);

 }

 }

}

The PriceTagHelper class inherits from the TagHelper abstract base class. It defines

properties for VideoPrice, CultureName, and Label. These Pascal-cased property names

will be translated into kebab case (yes, there is such a case) for use in the markup attributes.

The Microsoft Documentation refers to kebab case and references the
following discussion on Stack Overflow: https://stackoverflow.com/
questions/11273282/whats-the-name-for-hyphen-separated-
case/12273101#12273101.

Note that this class is in the VideoStore.TagHelpers namespace. We will, therefore,

need to declare only the VideoStore namespace in the _ViewImports file as seen in

Listing 5-12.

Listing 5-12.  Adding the Custom Tag Helper

@using VideoStore

@namespace VideoStore.Pages

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@addTagHelper *, VideoStore

Looking back at the code in Listing 5-11, you will see that the class has an

HtmlTargetElement attribute telling the compiler to target all videoPrice elements.

With this, all in place, build your project and modify the Detail page markup.

Chapter 5 Working with Razor Pages

https://stackoverflow.com/questions/11273282/whats-the-name-for-hyphen-separated-case/12273101#12273101
https://stackoverflow.com/questions/11273282/whats-the-name-for-hyphen-separated-case/12273101#12273101
https://stackoverflow.com/questions/11273282/whats-the-name-for-hyphen-separated-case/12273101#12273101

165

Looking back at Listing 5-10, you will remember that we hardcoded the currency.

With our custom tag helper in place, we can simply add the markup listed in Listing 5-13.

Listing 5-13.  The New Video Price Markup Using a Custom Tag Helper

<videoPrice video-price="@Model.Video.Price" culture-name="en-GB"

label="Price: "></videoPrice>

The custom tag helper uses the culture you pass it to determine the currency symbol

to display. It also allows you to specify a label for the video price. As mentioned earlier, it

uses these attributes (video-price, culture-name, and label) to map to the properties

of the PriceTagHelper class.

�Working with Partial Views
I generally assume that .NET developers think in an object-oriented manner. At least,

I do, and this is why I think the concept of partial views will be quite easy to grasp. The

definition of a partial view according to the Microsoft Documentation explains it quite

nicely.

A partial view is a Razor markup file (.cshtml) without an @page directive
that renders HTML output within another markup file’s rendered output.

This means that the partial view only renders as a part of your content which is very

useful when breaking up large complex views into smaller, more manageable pieces.

This also makes it a fantastic way to reduce the duplication of markup across files.

In the Solution Explorer, go ahead and add a partial view to your Videos folder by

right-clicking the folder and clicking Add and then Razor Page from the context menu.

Select Razor Page from the Add New Scaffolded Item dialog that is displayed, and click

the Add button.

I feel that the process of adding a partial view can be streamlined a lot in Visual
Studio. Nevertheless, the process is currently the way it is.

From the Add Razor Page dialog that is displayed, only check the Create as a

partial view check box as seen in Figure 5-8.

Chapter 5 Working with Razor Pages

166

Name the partial view _VideoStats, and click the Add button. You should see your

partial view as illustrated in Figure 5-9. This partial view will contain the following

information on each video:

•	 A rating

•	 A short review

•	 A URL for the video online

To make this possible, we need to digress a little bit and move away from the partial

view creation. We will need to add these properties to our Video class in the VideoStore.

Core project.

Because the properties are added to our Video class, we must update our

database table.

Figure 5-8.  Adding the _VideoStats Partial View

Chapter 5 Working with Razor Pages

167

It is here that the true benefit of migrations becomes obvious. We can quickly update

our database with these changes.

�Adding Video Properties and Updating the Database
We want to add some statistics to the Video class where we can store the rating, a short

review, and a URL to the video. Add the properties in Listing 5-14 to the Video class in

the VideoStore.Core project.

Listing 5-14.  The New Video Properties

public int Rating { get; set; }

public string Review { get; set; }

public string OnlineURL { get; set; }

I will not be posting the entire Video class code here, as I am sure you know where

to add the additional properties in Listing 5-14. Save the project, and open a Command

Prompt in the VideoStore.Data project folder.

Figure 5-9.  The _VideoStats Added to the Pages Folder

Chapter 5 Working with Razor Pages

168

In other words, open a Command Prompt, and change the directory to your
VideoStore.Data project. You can also right-click the VideoStore.Data project in the
Solution Explorer and click Open Folder in File Explorer.

When you have opened the Command Prompt, you are ready to add the new EF

Migrations to it by running the command in Listing 5-15.

Listing 5-15.  Add New EF Migrations

dotnet ef migrations add AddRatings -s ..\VideoStore\VideoStore.csproj

The migrations called AddRatings are added to the Migrations folder when the

command has run (Figure 5-10).

Figure 5-10.  The AddRating Migrations Added

Chapter 5 Working with Razor Pages

169

Next, we need to update the database table which is done by running the command

in Listing 5-16.

Listing 5-16.  Update the Database

dotnet ef database update -s ..\VideoStore\VideoStore.csproj

Once this command has run, the Videos table in the VideoStore database in SQL

Server Object Explorer will be updated (Figure 5-11).

We now have added all the necessary parts to get our _VideoStats partial view

working.

Figure 5-11.  The Updated Videos Table

Chapter 5 Working with Razor Pages

170

I have not added any code allowing us to provide values for these properties when
adding or editing a video. I will leave this for you as a homework assignment. For
now, I will just be adding the data directly to the database table.

To add the data for the additional properties, open SQL Server Object Explorer,

and right-click the Videos table. Select View Data from the context menu, and add data

for the Rating, Review, and OnlineURL columns.

�Adding Markup to the Partial View
Open up the _VideoStats page, and replace all the code in the markup, with the markup

illustrated in Listing 5-17.

Listing 5-17.  The _VideoStats Markup

@using VideoStore.Core

@model Video

<div class="card" style="width: 18rem;">

 <div class="card-header">

 @if (Model.Rating > 0)

 {

 for (int i = 0; i <= Model.Rating - 1; i++)

 {

 <i class="fas fa-star"></i>

 }

 }

 else

 {

 <h6>This video has not received any ratings yet</h6>

 }

 </div>

 <div class="card-body">

 <h5 class="card-title">@Model.Title</h5>

 <p class="card-text">@Model.Review</p>

Chapter 5 Working with Razor Pages

171

 View Online

 </div>

</div>

This basically just creates a card displaying the additional video statistics. It includes

the VideoStore.Core namespace and uses the Video model to display the additional

properties we added.

We want to add the video stats card to the Detail.cshtml page. To do this, I want to

format the Detail page slightly.

The structure of the Detail page will be as illustrated in Listing 5-18. The page will be

divided up into a grid pattern, using div elements.

Listing 5-18.  The New Detail Page Structure

<div class="row">

 <div class="col-md-12">Title</div>

</div>

<div class="row">

 <div class="col-md-6">Video Details</div>

 <div class="col-md-6">Video Stats</div>

</div>

<div class="row">

 <div class="col-md-12">footer</div>

</div>

The top row will contain the video title. The middle row will be further divided into

two parts. The left part will contain the existing video details, and the right part will

contain our new partial view. The bottom row will be the footer and contain the existing

back button that takes us back to the list of videos.

In order to use the partial view in our page, we need to add the partial tag helper. As

seen in Listing 5-19, it contains a name which is the name we gave to the partial view, as

well as the model we are passing to the partial view.

Listing 5-19.  The Partial Tag Helper

<partial name="_VideoStats" model="Model.Video" />

Chapter 5 Working with Razor Pages

172

We can now shuffle all the elements around and plug them into the new Detail page

structure. The complete Detail page markup is illustrated in Listing 5-20.

Listing 5-20.  The Complete Detail Page

@page "{videoId:int}"

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

 Layout = "_LayoutSpecial";

}

<div class="row">

 <div class="col-md-12"><h1>@Model.Video.Title</h1></div>

</div>

<div class="row">

 <div class="col-md-6">

 @if (Model.CommitMessage != null)

 {

 <div class="alert alert-info">@Model.CommitMessage</div>

 }

 <div>

 Catalog ID: @Model.Video.Id

 </div>

 <div>

 Release Date: @Model.Video.ReleaseDate.ToString("dd MMMM yyyy")

 </div>

 <div>

 Genre: @Model.Video.Genre

 </div>

 �<videoPrice video-price="@Model.Video.Price" culture-name="en-GB"

label="Price: "></videoPrice>

 <div>

 Lent Out: @Html.CheckBoxFor(x => x.Video.LentOut)

 </div>

Chapter 5 Working with Razor Pages

173

 @if (Model.Video.LentOut == true)

 {

 <div>

 Lent To: @Model.Video.LentTo

 </div>

 }

 </div>

 <div class="col-md-6">

 <partial name="_VideoStats" model="Model.Video" />

 </div>

</div>

<div class="row">

 �<div class="col-md-12"><a asp-page="./List" class="btn btn-outline-

primary">Back to Videos</div>

</div>

When this is complete, build and run your project. The Detail page is displayed as in

Figure 5-12.

Chapter 5 Working with Razor Pages

174

The Detail page is split in two, with the video stats displayed on the right half of the

page. You can simplify the Detail page even further by adding another partial view called

_VideoDetail to the Videos folder.

I will leave this for you to complete as an exercise, but the code accompanying this

book contains the completed logic. What you want to end up with is a Detail page that

looks as illustrated in Listing 5-21.

Figure 5-12.  The Modified Detail Page

Chapter 5 Working with Razor Pages

175

Listing 5-21.  The Simplified Detail Page

@page "{videoId:int}"

@model VideoStore.Pages.Videos.DetailModel

@{

 ViewData["Title"] = "Detail";

 Layout = "_LayoutSpecial";

}

<div class="row">

 <div class="col-md-12"><h1>@Model.Video.Title</h1></div>

</div>

<div class="row">

 <div class="col-md-6">

 @if (Model.CommitMessage != null)

 {

 <div class="alert alert-info">@Model.CommitMessage</div>

 }

 <partial name="_VideoDetail" model="Model.Video" />

 </div>

 <div class="col-md-6">

 <partial name="_VideoStats" model="Model.Video" />

 </div>

</div>

<div class="row">

 <div class="col-md-12"><a asp-page="./List" class="btn btn-outline-

primary">Back to Videos</div>

</div>

Partial views are perfect for simplifying complex or large markup and allows for easy

reuse of components in your markup.

Chapter 5 Working with Razor Pages

176

�Working with ViewComponents
So far in this chapter, we have looked at sections, _ViewImports, _ViewStart, and partial

views. With partial views, we saw that we can pass it a model to use, and in the previous

example, we passed it our Video model. But what if we didn’t want to do this? What if

we needed to add some type of markup to every page that needed to display some data?

Assume that we wanted to add a video of the day section to every page on the site.

When we want to render some markup on every page, we know that we can do this

by adding some logic to the _Layout page. This way, we can display the markup on every

page that implements that specific layout page. The only problem is that the layout page

does not contain a page model. It has no way of accessing any data, and we want to

access some data to display on every page in our Video Store.

This is where the view components come into play. The view component will be

able to function on its own and be able to access data without relying on the Razor page

passing it some data.

Start by adding a folder to your VideoStore project called ViewComponents as seen in

Figure 5-13.

Figure 5-13.  The ViewComponents Folder

Chapter 5 Working with Razor Pages

177

Inside that folder, add a class called VideoOfTheDayViewComponent, and add the code

in Listing 5-22.

Listing 5-22.  The VideoOfTheDayViewComponent Class

using Microsoft.AspNetCore.Mvc;

using VideoStore.Data;

namespace VideoStore.ViewComponents

{

 public class VideoOfTheDayViewComponent : ViewComponent

 {

 private readonly IVideoData _videoData;

 public VideoOfTheDayViewComponent(IVideoData videoData)

 {

 _videoData = videoData;

 }

 public IViewComponentResult Invoke()

 {

 var video = _videoData.GetTopVideo();

 return View(video);

 }

 }

}

It is important to note that view components do not respond to HTTP requests.

You can think of the view component as a type of partial view that is embedded inside

different views on your site. When this view is generated, ASP.NET Core will call a

method called Invoke and return an IViewComponentResult to the page.

You must add the VideoStore.Data and Microsoft.AspNetCore.Mvc namespaces to
the VideoOfTheDayViewComponent class.

Chapter 5 Working with Razor Pages

178

The view component can have a constructor, and it is here that we inject the

IVideoData service via dependency injection. This allows the view component to work

autonomously with the data in our project. The Invoke method then calls a method on

the data service called GetTopVideo.

We must now add this method to our data service. Open up the IVideoData Interface,

and add the GetTopVideo method to the Interface as illustrated in Listing 5-23.

Listing 5-23.  The Modified IVideoData Interface

using System.Collections.Generic;

using VideoStore.Core;

namespace VideoStore.Data

{

 public interface IVideoData

 {

 IEnumerable<Video> ListVideos(string title);

 Video GetVideo(int id);

 Video GetTopVideo();

 Video UpdateVideo(Video videoData);

 Video AddVideo(Video newVideo);

 int Save();

 }

}

The GetTopVideo method just returns a Video object. Because the TestData and

SQLData classes implement the IVideoData Interface, we need to add implementations

to these classes for the GetTopVideo method. I’m not too worried about the

implementation for the TestData class, so I’ll simply return the first video as seen in

Listing 5-24.

Listing 5-24.  The TestData Class Implementation

public Video GetTopVideo()

{

 return _videoList.First();

}

Chapter 5 Working with Razor Pages

179

When it comes to the SQLData class, however, I want to be a bit more specific with

the code. You can implement the code as you see fit, but I will simply generate a random

number between 1 and the count of videos and find the video with that ID.

To be quite honest, the Random class is not truly random. For true randomness,
think about implementing a cryptographic random number generator if true
randomness is important to you. Jon Skeet has a great article online regarding this.
Secondly, one would probably not implement a video of the day using a random
ID. You would probably do this using other criteria such as the top 10 rated movies
in the Video Store or the most popular videos determined by how many times it
has been rented. In any event, I am just trying to explain a concept here of view
components. I am not explaining the best way to determine which video is the
video of the day.

The code in Listing 5-25 illustrates the implementation of the GetTopVideo method

in the SQLData class.

Listing 5-25.  The SQLData Class Implementation

public Video GetTopVideo()

{

 var rnd = new Random();

 if (_database.Videos.Count() == 0)

 return new Video();

 else

 {

 var r = rnd.Next(1, _database.Videos.Count());

 return _database.Videos.Find(r);

 }}

The code is rather simple, so I will not spend too much time explaining it. Next, we

need to add a view that will display our video of the day. This is because, referring back

to Listing 5-22, we return a View(video) from the Invoke method. View components

also follow a very specific naming convention. The _Layout page will be using our video

of the day view, so we will be adding it to the Shared folder.

Chapter 5 Working with Razor Pages

180

For ASP.NET Core to be able to locate view component views, I need to create a

folder called Components, and inside the Components folder, I need to add another

folder called the same as the ViewComponent name, just without the ViewComponent bit

on the end. This means that I simply need to call my folder VideoOfTheDay. Inside the

VideoOfTheDay folder, I can add views dedicated to my view component.

If you think back to the Invoke method on the VideoOfTheDayViewComponent class, I

just returned View(video). I could also have returned View("TodaysVideo", video) by

passing the name of the view (TodaysVideo) to return. I would then need to create a view

in the VideoOfTheDay folder called TodaysVideo.cshtml. That isn’t something I want to

do, so I can simply just call my view Default.cshtml as seen in Figure 5-14.

Note that the Default.cshtml page doesn’t contain a page model. It’s just a regular

cshtml file.

We now want to add some markup to the Default.cshtml page. As seen in Listing 5-26,

this will remind you about the partial view we created earlier in the chapter.

Figure 5-14.  The VideoOfTheDay View

Chapter 5 Working with Razor Pages

181

Listing 5-26.  The Default ViewComponent View

@using VideoStore.Core

@model Video

<div class="row alert alert-info">

 <div class="col-md-12">

 Video of the day: @Model.Title

 </div>

</div>

With this in place, we almost have everything we need.

Usually, at this point, we would need to add the tag helpers in our VideoStore
namespace to the _ViewImports file. Because we added a custom tag helper
earlier in the chapter, we don't need to do this now.

Back in the _Layout.cshtml page, we can use the vc: tag helper to display the

ViewComponent we just created (Listing 5-27) and refer to the name of our view

component, in kebab case, without the ViewComponent bit on the end.

Listing 5-27.  The vc Tag Helper for Our ViewComponent

<vc:video-of-the-day></vc:video-of-the-day>

If your project is built, the video-of-the-day tag helper will pop up via IntelliSense.

Placing this here tells the tag helper to find a view called VideoOfTheDay and render it.

I just placed this in the footer of my layout page and ran the application. The video of

the day will be displayed in the footer of every page as seen in Figure 5-15.

Chapter 5 Working with Razor Pages

182

ViewComponents allow you to add logic to your Razor pages while separating the

complexity of the code away from the Razor pages. This is because the ViewComponent

can access the data on its own. This differs from the partial view that relies on the parent

Razor view for the model information.

Figure 5-15.  The Video of the Day ViewComponent

Chapter 5 Working with Razor Pages

183
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5_6

CHAPTER 6

Adding Client-Side Logic
Part of developing web applications is knowing how to style your UI properly. Some

might argue that this is the role of a front-end or full-stack developer, but it is good that

every developer knows the basics of CSS, jQuery, and JavaScript.

In this chapter, we will have a look at working with SCSS to create CSS. We will also

have a look at using jQuery and JavaScript. Being able to develop client-side logic to add

functionality to your web application is a skill web developers need to embrace.

�Separate Production Scripts from Development
Scripts
During development, it is preferable to be able to separate scripts and other static

files from the files that will be used during production. This is important because in a

production environment, you might want to use a minified file or a file from a CDN.

Static files are files that are used for Bootstrap, jQuery, fonts, .css, .js, or images.
By default, static files are served from the wwwroot folder in your project.

It is possible to tell ASP.NET Core that you want to apply different files in a

production environment by using a special tag helper in your markup. We saw in earlier

chapters that we could use the _Layout page to apply a specific look and feel to all pages

on your site. We also saw that we could override the default _Layout page on certain

pages.

A general rule of thumb is that .css files are added in the <head> tags of your _Layout

page, while .js files are added last, after the <footer> in the _Layout page. It, therefore,

makes sense to control which files are served during development as opposed to

production, from the _Layout page.

https://doi.org/10.1007/978-1-4842-6828-5_6#DOI

184

To implement this, we will use the environment tag helper. Let’s test the use of

this special tag helper by adding the code in Listing 6-1 to the <footer> section of the

_Layout page.

Listing 6-1.  Using the Environment Tag Helper

<footer class="border-top footer text-muted">

 <vc:video-of-the-day></vc:video-of-the-day>

 <div class="container">

 �© 2020 - VideoStore - <a asp-area="" asp-page=

"/Privacy">Privacy

 </div>

 <environment include="Development">

 <h2>Development</h2>

 </environment>

 <environment exclude="Development">

 <h2>Production</h2>

 </environment>

</footer>

The include and exclude attributes on the environment tag helpers tell ASP.NET

Core when to apply the markup contained. In other words, include="Development"

will only apply the code contained in the environment element when you are running a

development profile. The opposite is true for the exclude="Development" attribute.

To control the profile that you are currently running, open up the launchSettings.

json file contained in the Properties folder of your application. You will see the JSON as

illustrated in Listing 6-2.

Listing 6-2.  The launchSettings.json File

{

 "iisSettings": {

 "windowsAuthentication": false,

 "anonymousAuthentication": true,

 "iisExpress": {

 "applicationUrl": "http://localhost:57104",

Chapter 6 Adding Client-Side Logic

185

 "sslPort": 44398

 }

 },

 "profiles": {

 "IIS Express": {

 "commandName": "IISExpress",

 "launchBrowser": true,

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 "VideoStore": {

 "commandName": "Project",

 "launchBrowser": true,

 "applicationUrl": "https://localhost:5001;http://localhost:5000",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 }

 }

}

You will notice that we have an IIS Express profile that sets an environment variable

called ASPNETCORE_ENVIRONMENT to Development.

Chapter 6 Adding Client-Side Logic

186

This means that whenever we launch our application in IIS Express, this profile will

be loaded and the environment variable applied. The environment tag helper in the

footer then checks this variable and applies the markup applicable to the profile used.

Running your application, you will see that the heading Development is displayed as seen

in Figure 6-1.

Figure 6-1.  Running the Application in Development

Chapter 6 Adding Client-Side Logic

187

Back in the launchSettings.json file, change the ASPNETCORE_ENVIRONMENT value to

Production and run the application again. You will see that the footer now contains the

heading Production (Figure 6-2).

The second profile is called VideoStore, and this profile is used when you run the

application from the Console using the dotnet run command. With what we know

about the profiles and environment variables, we can easily apply different scripts and

styles to our site, based on whether we are running in development or production.

�Setting Up SCSS and Generating CSS
Part of styling your application correctly will invariably require developers to use CSS. If

you have to use CSS, you will most likely love working with Sass.

Figure 6-2.  Running the Application in Production

Chapter 6 Adding Client-Side Logic

188

Sass is a feature-rich CSS extension language. You can read up more about Sass
from the website https://sass-lang.com/.

Sass is compatible with all versions of CSS and is widely adopted. It allows

developers to create CSS by using the Sass syntax that is then compiled into CSS. It will

also create a minified CSS file.

There are many reasons you can use Sass with confidence. Here are a few of them:

•	 It is compatible with all versions of CSS.

•	 It boasts more features and abilities than other CSS extensions

currently available.

•	 It has actively been supported for around 14 years.

•	 There is a large community behind Sass, so finding help is never a

problem.

Sass supports features such as variables, nesting, partials, modules, mixins,

extensions, inheritance, as well as operators. The use of it will, therefore, come very

natural to developers.

More information on these features is available at the following link: https://
sass-lang.com/guide.

If you were wondering why the heading of this section mentions SCSS, but that

I’m talking about Sass, let me explain. There are two kinds of syntaxes used for Sass.

Using .sass files, you will not need to use semicolons and curly braces. Using .scss files,

however, do use curly braces and semicolons. It doesn’t care about indentation levels

or whitespace and is a superset of CSS. In fact, SCSS means Sassy CSS. Therefore, SCSS

contains all the features of CSS but has also expanded to include Sass features.

Chapter 6 Adding Client-Side Logic

https://sass-lang.com/
https://sass-lang.com/guide
https://sass-lang.com/guide

189

Let’s start by creating a folder called scss in the wwwroot of our project. You can see

this folder added in Figure 6-3.

Figure 6-3.  Created scss Folder

Chapter 6 Adding Client-Side Logic

190

The next thing we need to do is to add a new SCSS Style Sheet to the scss folder. To

do this, right-click the folder, and select Add ➤ New Item to open up the Add New Item

window.

As seen in Figure 6-4, from the search box, type in scss, and select an SCSS Style

Sheet (SASS) file. Call this file custom.scss, and click the Add button.

It is important to note that the name of this file needs to be consistent throughout

your code. If you call it anything else (from what I have named it), you need to maintain

that reference when adding the link to your generated CSS file.

Figure 6-4.  Add an SCSS Style Sheet

Chapter 6 Adding Client-Side Logic

191

Once you have added the file to your scss folder, your VideoStore project should

look as in Figure 6-5. This is the file that we will add our SCSS syntax to. The CSS for our

project will be compiled from this SCSS file.

Figure 6-5.  Custom SCSS File Added

Chapter 6 Adding Client-Side Logic

192

The next task is to add a web compiler to the project. In Visual Studio 2019 version

16.6.2, you need to head on over to the Extensions menu in the toolbar and click Manage

Extensions.

This will open up the Manage Extensions window. As seen in Figure 6-6, search for

the term web compiler, and sort by relevance. The extension I am looking for here is

created by Mads Kristensen. It is free and very easy to use.

Visual Studio might need to be closed and restarted to initiate the installation of this

extension.

Figure 6-6.  Adding a Web Compiler

Chapter 6 Adding Client-Side Logic

193

Right-click the custom.scss file (Figure 6-7), and select Web Compiler ➤

Compile file.

Figure 6-7.  Compiling the File

Chapter 6 Adding Client-Side Logic

194

You will now see that the custom.scss file generates a custom.css and a custom.

min.css file nested underneath one another (Figure 6-8).

Also very important to note is the addition of a new file called compilerconfig.json

(just below the appsettings.json file in Figure 6-8). It is this configuration file that will

be used to control exactly where our generated CSS files are created.

Looking at the compilerconfig.json file in Listing 6-3, we can see that it defines the

location of the generated CSS files in the same place as the custom.scss file.

Figure 6-8.  The Compiled Files and Compiler Configuration

Chapter 6 Adding Client-Side Logic

195

Listing 6-3.  The compilerconfig.json File

[

 {

 "outputFile": "wwwroot/scss/custom.css",

 "inputFile": "wwwroot/scss/custom.scss"

 }

]

I do not want the generated CSS file to live in my scss folder. There is already a folder

for my CSS files in the wwwroot of my project. Go ahead and modify the output path for

the generated CSS file to be the css folder as illustrated in Listing 6-4.

Listing 6-4.  The Modified compilerconfig.json File

[

 {

 "outputFile": "wwwroot/css/custom.css",

 "inputFile": "wwwroot/scss/custom.scss"

 }

]

Whenever we save any changes to the scss file, the css file will be regenerated and

placed in the css folder of the wwwroot. You can see these files created in the css folder

in Figure 6-9.

To illustrate the power of SCSS, consider the Video Detail page. Remember that we

created a video stats section that displays a short blurb about the particular video, a star

rating, and a button to view the video page online. The stars used for the star rating were

Font Awesome icons. The markup for this section was contained in the _VideoStats.

cshtml partial view. The code is included again in Listing 6-5.

Chapter 6 Adding Client-Side Logic

196

The stars were added by including the markup <i class=“fas fa-star”></i> on each

iteration of the rating received for the video. In other words, a rating of 4 will equal 4

stars.

Listing 6-5.  The _VideoStats Partial View

@using VideoStore.Core

@model Video

<div class="card" style="width: 18rem;">

 <div class="card-header">

 @if (Model.Rating > 0)

 {

Figure 6-9.  The Relocated Compiled Files

Chapter 6 Adding Client-Side Logic

197

 for (int i = 0; i <= Model.Rating - 1; i++)

 {

 <i class="fas fa-star"></i>

 }

 }

 else

 {

 <h6>This video has not received any ratings yet</h6>

 }

 </div>

 <div class="card-body">

 <h5 class="card-title">@Model.Title</h5>

 <p class="card-text">@Model.Review</p>

 View Online

 </div>

</div>

Currently, the stars are black. I would like these stars to be a golden color. I am

therefore going to be using CSS to change the color of the stars from black to golden.

Open up the custom.scss file, and add the following code as illustrated in Listing 6-6.

Listing 6-6.  Changing the Star Rating Color in the SCSS File

$star-color: #DAA520;

i.fas.fa-star {

 color: $star-color;

}

The scss file uses a variable called $star-color and sets it to the required hash

code. All you need to do now is save your custom.scss file, and the custom.css file will

be automatically updated with the changes. Looking at the generated CSS file, you will

see the code in Listing 6-7.

Listing 6-7.  The Generated CSS

i.fas.fa-star {

 color: #DAA520; }

Chapter 6 Adding Client-Side Logic

198

This means that I only have to specify the color once and set a variable that I can use

throughout my style sheet. If the color ever changes, I only need to change it in a single

place. But we are not finished yet. We still need to add a reference to the generated CSS

file on our layout page.

You will remember that we used a different layout page for the Video Detail page.

This layout page was called _LayoutSpecial.cshtml. Open this file, and change the code

in the <head> tag as illustrated in Listing 6-8.

Listing 6-8.  Referencing the custom.css File

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>@ViewData["Title"] - VideoStore</title>

 �<link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.

css" />

 <link rel="stylesheet" href="~/css/site.css" />

 <environment include="Development">

 <link rel="stylesheet" href="~/css/custom.css" />

 </environment>

 <environment exclude="Development">

 <link rel="stylesheet" href="~/css/custom.min.css" />

 </environment>

</head>

Here, you can see that we are telling ASP.NET Core to use the minified CSS file in

production. When you run your Video Store application, and head on over to the Video

Detail page, you will see that the stars are colored golden.

Chapter 6 Adding Client-Side Logic

199

Figure 6-10.  The Applied CSS Style

Looking at the applied styles in DevTools (Figure 6-10), you will see that the color

style we specified is visible in the Styles tab.

�SCSS Partial Files
Let’s pause here to focus a bit on SCSS. Remember how I mentioned earlier that we can

use partials? Well, partials are a way to modularize your code. Partial files are named

with a leading underscore. This tells the web compiler not to compile this file into a CSS

file of their own (like the custom.css file). Instead, these partial files can be used and

imported or injected into other files and used there. To illustrate this, add a new SCSS file

called _variables.scss to the scss folder as seen in Figure 6-11.

Chapter 6 Adding Client-Side Logic

200

Inside the _variables partial file, add the code illustrated in Listing 6-9.

Listing 6-9.  The _variables Partial File

/* Site Palette*/

$star-color: #DAA520;

We now have a separate place to store and change our variables used in the style

sheets. Next, we need to modify the custom.scss file to import the _variables partial

file as illustrated in Listing 6-10.

Listing 6-10.  Importing the _variables Partial File

@import "_variables.scss";

i.fas.fa-star {

 color: $star-color;

}

Figure 6-11.  Adding a _variables Partial File

Chapter 6 Adding Client-Side Logic

201

We can now import the required partial files wherever we require them. We can

also have more than one partial file, as long as the file name begins with a leading

underscore.

We have made a few changes to the way we create our SCSS. We have split the

functionality of variables into a separate partial file and can now control where we

use that partial file. But have a look at the generated CSS file. It hasn’t changed a bit. It

has stayed the same. SCSS, therefore, allows us to structure the code used to style our

application easily while producing the same output as expected.

�Using SCSS @mixin
You can create mixins using the @mixin keyword. This allows you to create common sets

of properties that can use default values for parameters but can still be overridden. We

have used a partial file for variables, so let’s use a partial file for our mixins.

Add a new partial file called _mixins.scss in the scss folder as seen in Figure 6-12.

Add the code in Listing 6-11 to the file.

Figure 6-12.  Partial File for Mixins

Chapter 6 Adding Client-Side Logic

202

Listing 6-11.  The Mixin File’s Code

@mixin header-font($family: 'Times New Roman', $weight: 400, $style:

normal, $color: black) {

 font-family: $family, Helvetica, sans-serif;

 font-style: $style;

 font-weight: $weight;

 color: $color;

}

This mixin creates a header font that will use Times New Roman with a weight of 400,

a normal style, and a color of black. In the custom.scss file, include the mixin file using

@import, and apply the header font to H1 and H2 elements (Listing 6-12).

Listing 6-12.  Import and Apply the Mixin

@import "_variables.scss";

@import "_mixins.scss";

i.fas.fa-star {

 color: $star-color;

}

h1 {

 @include header-font;

}

h2 {

 @include header-font('Arial', 200, normal, red);

}

You can see that the default values will be used when applied to H1 elements, but that

we are overriding the values when we apply the style to H2 elements. Now modify the

Index.cshtml page markup as illustrated in Listing 6-13.

Chapter 6 Adding Client-Side Logic

203

Listing 6-13.  Modified Index Page

@page

@model IndexModel

@{

 ViewData["Title"] = "Home page";

}

<div class="text-center">

 <h1 class="display-4">Welcome</h1>

 �<p>Learn about <a href="https://docs.microsoft.com/aspnet/

core">building Web apps with ASP.NET Core.</p>

 <h2>In This Course</h2>

 <p>Add some course details here.</p>

</div>

Run your application and see the mixin applied to the header elements on the

Index page (Figure 6-13).

Figure 6-13.  The Index Page

Chapter 6 Adding Client-Side Logic

204

Another interesting thing to look at is the custom.css file illustrated in Listing 6-14.

Our SCSS file contains minimal code, but using the power of partial files and @import,

we can easily provide logic to style our markup.

Listing 6-14.  The Compiled CSS

i.fas.fa-star {

 color: #DAA520; }

h1 {

 font-family: "Times New Roman", Helvetica, sans-serif;

 font-style: normal;

 font-weight: 400;

 color: black; }

h2 {

 font-family: "Arial", Helvetica, sans-serif;

 font-style: normal;

 font-weight: 200;

 color: red; }

While I would probably never use Times New Roman in an application, this does

illustrate the power of mixins. I’m not sure if the medium you’re using to read this book

contains color images, but trust me, the H2 element is red.

Using mixins allows you to be very flexible when applying styles. You can just set it to

the mixin name or tweak it slightly to suit your needs.

�Using SCSS @extend
In SCSS, the @extend keyword will make developers think of Inheritance. This allows you

to inherit the properties of one class and apply them to another. This is a great way to

avoid code duplication.

To see how this works, start by creating a variable in the _variables.scss file called

$border-color and make it red. Add another variable called $highlight-color and

make it blue. The code can be seen in Listing 6-15.

Chapter 6 Adding Client-Side Logic

205

Listing 6-15.  Additional SCSS Variables

$star-color: #DAA520;

$border-color: #FF0000;

$highlight-color: #FF0000;

$highlight-text-color: #ffffff;

Because our custom.scss file imports the variables, we can reference those variables

there. Consider the complete code for the custom.scss file in Listing 6-16.

Listing 6-16.  Extending a Class in SCSS

@import "_variables.scss";

@import "_mixins.scss";

i.fas.fa-star {

 color: $star-color;

}

h1 {

 @include header-font;

}

h2 {

 @include header-font('Arial', 200, normal, red);

}

.pBorder {

 border: 2px solid $border-color;

}

.pBorder-highlight {

 @extend .pBorder;

 background-color: $highlight-color;

 color: $highlight-text-color;

}

Chapter 6 Adding Client-Side Logic

206

I have added a style for a class called .pBorder. All this does is create a red border

around the element applying that class. This is because it makes use of the $border-

color variable.

Suppose I wanted to create a slight variation of this class but didn’t want to add

in the code from .pBorder a second time, I could use the @extend keyword as seen

in Listing 6-16 for .pBorder-highlight. The line of code @extend .pBorder takes

everything in .pBorder and applies it to .pBorder-highlight. Whatever else I define

in .pBorder-highlight is only applied to .pBorder-highlight.

While the code in .pBorder is rather simple, imagine for a moment a class that

applies a lot of styles. Extending classes now becomes worth its weight in gold, because it

negates code duplication and allows you to keep any future changes to a single place.

Save your custom.scss file, and let’s have a look at what the compiled CSS file looks

like. You can see this in Listing 6-17.

Listing 6-17.  The Compiled CSS File

i.fas.fa-star {

 color: #DAA520; }

h1 {

 font-family: "Times New Roman", Helvetica, sans-serif;

 font-style: normal;

 font-weight: 400;

 color: black; }

h2 {

 font-family: "Arial", Helvetica, sans-serif;

 font-style: normal;

 font-weight: 200;

 color: red; }

.pBorder, .pBorder-highlight {

 border: 2px solid #FF0000; }

.pBorder-highlight {

 background-color: #0000FF;

 color: #ffffff; }

Chapter 6 Adding Client-Side Logic

207

If you compare the compiled CSS to the extended code in the SCSS file, then you

can see that the extended code in the SCSS file makes the intent clearer and more

concise. Let’s go ahead and apply these classes to the Index.cshtml page as illustrated

in Listing 6-18.

Listing 6-18.  Classes Applied to Index Page

@page

@model IndexModel

@{

 ViewData["Title"] = "Home page";

}

<div class="text-center">

 <h1 class="display-4">Welcome</h1>

 �<p class="pBorder">Learn about <a href="https://docs.microsoft.com/

aspnet/core">building Web apps with ASP.NET Core.</p>

 <h2>In This Course</h2>

 <p class="pBorder-highlight">Add some course details here.</p>

</div>

If you run the application, you will see the styles applied to the <p> elements on the

Index page in Figure 6-14.

Chapter 6 Adding Client-Side Logic

208

Being able to extend classes in SCSS allows you to be extremely flexible. Not having

to rewrite code is also great, because should you need to change something further down

the line, you only need to change it in a single place.

�Using SCSS Functions
Using functions with SCSS is exactly what you think it is. What functions allow you to do

is create some logic that can be applied wherever you import your partial file.

A partial file will be used to contain often used functions that can then be imported
into the custom.scss file.

This makes using functions very powerful when creating styles with SCSS.

To see how this works, start by creating a new partial file called _functions.scss in

the scss folder. This can be seen in Figure 6-15. This file will contain all the functions

that we write and that must be applied in the style sheets.

Figure 6-14.  The Index Page Applying the pBorder Classes

Chapter 6 Adding Client-Side Logic

209

What I want to do is create a function that will calculate element padding for me

based on a supplied value, multiplied by a base value. If no value is supplied, then a

default value must be used. Before we can add this function, we need to add a variable

$base-padding to the _variables.scss partial file.

Listing 6-19.  The Base Padding Value

/* Site Palette*/

$star-color: #DAA520;

$border-color: #FF0000;

$highlight-color: #0000FF;

$highlight-text-color: #ffffff;

/* Base Padding */

$base-padding: 2px;

Figure 6-15.  The Functions Partial File

Chapter 6 Adding Client-Side Logic

210

As seen in Listing 6-19, the base padding value is 2 pixels. Next, in the _functions.

scss file, add the code in Listing 6-20.

Listing 6-20.  The Padding Calculation Function

@import "_variables.scss";

@function padding-calc($factor: 1) {

 @return $base-padding * $factor;

}

Because we are using the $base-padding variable, we need to import the

_variables.scss partial file. Functions are created using the @function keyword

followed by the function name. Parameters can be passed to the function. In the example

in Listing 6-20, the function takes a parameter called $factor. If no value is supplied,

then the default value of 1 will be applied to the $factor. The function then returns the

result of multiplying the base padding with the factor to determine the element padding.

To see this in action, modify your custom.scss file by importing the _functions.

scss file and applying the function to an element to calculate the padding. This is

illustrated in Listing 6-21. You will see that the padding-calc function has been applied

to the .pBorder class.

Listing 6-21.  Using the Function

@import "_variables.scss";

@import "_mixins.scss";

@import "_functions.scss";

i.fas.fa-star {

 color: $star-color;

}

h1 {

 @include header-font;

}

h2 {

 @include header-font('Arial', 200, normal, red);

}

Chapter 6 Adding Client-Side Logic

211

.pBorder {

 border: 2px solid $border-color;

 padding: padding-calc(5);

}

.pBorder-highlight {

 @extend .pBorder;

 background-color: $highlight-color;

 color: $highlight-text-color;

}

Save the custom.scss file, and inspect the generated custom.css file. You can see the

resulting code in Listing 6-22. In this instance, because we supplied a value of 5 to the

padding-calc function, the resulting value for padding was calculated as 10.

Listing 6-22.  The .pBorder Class in the Generated CSS

.pBorder, .pBorder-highlight {

 border: 2px solid #FF0000;

 padding: 10px; }

Change the custom.scss file, and remove the value of 5 passed to the padding-calc

function (Listing 6-23).

Listing 6-23.  The padding-calc Without a Parameter

.pBorder {

 border: 2px solid $border-color;

 padding: padding-calc();

}

If you save the custom.scss file and inspect the generated custom.css file, you will

notice that the calculated value for the padding in the .pBorder class has changed to 2

pixels (Listing 6-24).

Listing 6-24.  The Default Parameter Value Applied

.pBorder, .pBorder-highlight {

 border: 2px solid #FF0000;

 padding: 2px; }

Chapter 6 Adding Client-Side Logic

212

This is because the default parameter value of 1 for the $factor was applied to the

calculation with the $base-padding value of 2.

�Working with Chrome Developer Tools
The web application in this book is run in Google Chrome. It is for that reason that I have

included a section on Chrome Developer Tools in this chapter. Developer tools are also

available in other browsers, so if you use a different browser for debugging, the features

and functionality explained in this section might differ from yours.

Debugging your web application isn’t always a case of placing a breakpoint in the

C# code and stepping through the code. Sometimes, you need a way to inspect and

step through client-side code such as jQuery, or to modify CSS. This is where Chrome

Developer Tools can come in handy.

Running your web application, you should see the Index page that we modified

earlier in the previous section on SCSS. Right-click the page (or right-click an element on

the page such as a heading), and click Inspect from the context menu. You can also hold

down Ctrl+Shift+I to open the developer tools.

Chapter 6 Adding Client-Side Logic

213

Expanding the elements, you should see the header elements as illustrated in

Figure 6-16.

If you right-clicked the Welcome heading, you will be taken directly to the H1
element.

This is the markup for the Index page, and you can modify the layout directly in

DevTools.

�Dragging Elements
The elements displayed in DevTools are all draggable. With the H1 element selected, click

and drag it to below the H2 element.

Figure 6-16.  The Page Markup Displayed in DevTools

Chapter 6 Adding Client-Side Logic

214

Your markup will look as illustrated in Figure 6-17. Notice how when you drag the

elements around, the web page is updated to display the changed layout (Figure 6-18).

Figure 6-17.  The H1 Element Dragged to Below the H2 Element

Chapter 6 Adding Client-Side Logic

215

You are now in a position to see how the page will look by dragging elements

around the page. This is great for changing the layout of a page without having to make

permanent changes to your code. When you refresh the page, the layout of the elements

is reset to what they were before you started moving them around.

�Adding and Modifying Styles
It is also possible to modify the CSS in DevTools. This is a fantastic way to check if the

styling changes look nice or if planned changes will have the intended effect.

With the page reset by refreshing the page, right-click the H2 element and click

Inspect. Note that you don’t need to close DevTools to inspect an element. You can

inspect an element while DevTools is open. The focused element in DevTools will jump

to the H2 element as seen in Figure 6-19.

Figure 6-18.  The Updated Web Page

Chapter 6 Adding Client-Side Logic

216

You can see that the CSS for the page is displayed in the Styles tab on the right.

Thinking back to the code we added to the SCSS file for the H2 element, you will

remember that we included the @mixin as seen in Listing 6-25.

Listing 6-25.  The SCSS Code for the H2 Element

h2 {

 @include header-font('Arial', 200, normal, red);

}

The generated CSS specifies that the font color must be red. In the Styles tab, we can

change this color by clicking the little red block next to the color attribute (Figure 6-20).

Figure 6-19.  The Highlighted H2 Element

Chapter 6 Adding Client-Side Logic

217

The color palette that opens up allows you to change the color. Notice how the web

page is immediately updated as you change the color. The Styles tab allows you to do

much more than just changing styles. You can add new styles, classes, and toggle state by

clicking the icons to the right of the Filter illustrated in Figure 6-21.

Figure 6-20.  Changing the Font Color of the H2 Element

Figure 6-21.  Adding Styles, Classes, and State

Chapter 6 Adding Client-Side Logic

218

With the H2 element selected, click the plus (+) button. You will see that a style rule is

added that you can add attributes to.

�Add a New Class
Adding a new class to an element is just as easy. Close the browser and modify the

custom.scss file by adding a new class called .featuredH2 that applies a different font size

and color (Listing 6-26).

Listing 6-26.  The featuredH2 Class

.featuredH2 {

 @include header-font('Arial', 300, normal, gold);

}

With this new class added and compiled, run the web application again. With the H2

element selected, click the .cls button seen in Figure 6-21 as illustrated in Figure 6-22.

Type the name of the new class we just added and hit Enter.

Figure 6-22.  Adding a New Class

Chapter 6 Adding Client-Side Logic

219

Figure 6-23.  The New featuredH2 Class Applied

It is important to note that all these changes are just temporary. When you refresh
or close your page, all the changes you made will be lost.

You will see that the web page is updated as the new class style is applied to the H2

element. The H2 element is also updated to show the added class as seen in Figure 6-23.

This allows you to test different classes on elements on your web page without

having to change any code.

�Testing State Changes
If you happen to have elements that respond to state changes, you can trigger the state of

an element using DevTools. As it turns out, there is a link on the Index page. The link is

just below the H1 element. Right-click the link, and click Inspect. As seen in Figure 6-21,

click the :hov button, and check the :hover state as seen in Figure 6-24.

Chapter 6 Adding Client-Side Logic

220

You will see that the a:hover style rule is loaded in the Styles tab. The link element is

now in a permanent hover state while the :hover state is checked. You can now modify

the element state. Change the :hover state style as illustrated in Listing 6-27.

Listing 6-27.  The Modified Hover State

a:hover {

 color: #dc3545;

 text-decoration: line-through;

}

When you have done this, uncheck the :hover state, and move your mouse over the

link on the web page. You will see that the changes you made to the hover state of the

link are now applied whenever you hover your mouse over the link.

Forcing the state of an element allows you to ensure that the style you want is visually

applied to allow you to modify the style easily.

Figure 6-24.  The Hover State Triggered

Chapter 6 Adding Client-Side Logic

221

�Throttling Network Speed
Sometimes you need to understand how your site will perform when users access it from

a slow Internet connection. To test this, open DevTools, and click the Network tab as

seen in Figure 6-25.

Here, you will see on the second toolbar that the site shows Online. Next to the text

Online, you will see a down arrow. Click this down arrow to reveal the different presets

available as seen in Figure 6-26.

Figure 6-25.  Viewing the Network Tab

Chapter 6 Adding Client-Side Logic

222

Selecting Slow 3G will throttle your site speed.

Figure 6-26.  Selecting the Throttling State

Figure 6-27.  Adding a Custom Profile

Chapter 6 Adding Client-Side Logic

223

Being able to throttle your network speed allows you to test the performance of

your code on the page. You can even add a custom Network Throttling Profile as seen in

Figure 6-27. This is extremely useful when you have a specific networking requirement

that your site needs to adhere to.

�Wrapping Up
The DevTools in Chrome allows you to do a lot more than what I have shown in

this chapter. I could write a separate book on using the developer tools in Chrome.

Unfortunately, I only have a few pages to do this in, and I simply wanted to introduce

some key concepts here in this chapter. In addition to what I have shown here, Chrome

Developer Tools allows you to do the following:

•	 Add breakpoints to scripts allowing you to debug them.

•	 Step through the script execution while in a breakpoint state.

•	 Add Event Listener breakpoints on scripts for events such as click and

mouseover events.

•	 Add variables to a Watch as well as add expressions to the Watch.

•	 Log information to the Console window in DevTools.

•	 Save your Console output.

•	 Audit the website’s speed.

•	 Simulate different mobile devices to test how your site is displayed.

Google has a rich set of online documentation available for Chrome DevTools at the

following link: https://developers.google.com/web/tools/chrome-devtools/.

There is a lot to learn there, and the more you familiarize yourself with it, the more

benefit it will provide you when debugging your web applications.

Chapter 6 Adding Client-Side Logic

https://developers.google.com/web/tools/chrome-devtools/

225
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5_7

CHAPTER 7

Exploring Middleware
In this chapter, we will be taking a closer look at middleware and the role it plays in ASP.

NET Core. Understanding the role of middleware will help you structure your ASP.NET

Core applications to make efficient use of middleware and the requests they handle.

�What Is Middleware
Let’s first answer the most glaring question. What exactly is middleware? The simple

answer is the following: Middleware can be thought of as a pipeline of code that handles

requests and responses. Middleware chooses to pass requests to the next bit of code in

the pipeline or doing something with that request before passing it on.

Request delegates are used to build this pipeline of software that handles each HTTP

request. The request delegates are configured by using the Run, Map, and Use extension

methods. Each request delegate can be specified in-line (in-line middleware) or as a

reusable class.

Looking at the Startup.cs class in our application, the Configure method (Listing 7-1)

is what ASP.NET Core uses to work out what middleware needs to be executed.

Listing 7-1.  The Configure Method

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 _ = app.UseDeveloperExceptionPage();

 }

https://doi.org/10.1007/978-1-4842-6828-5_7#DOI

226

 else

 {

 _ = app.UseExceptionHandler("/Error");

 _ = app.UseHsts();

 }

 _ = app.UseHttpsRedirection();

 _ = app.UseStaticFiles();

 _ = app.UseRouting();

 _ = app.UseAuthorization();

 _ = app.UseSession();

 _ = app.UseEndpoints(endpoints =>

 {

 _ = endpoints.MapRazorPages();

 });

}

Middleware is installed by calling extension methods on an object implementing the

IApplicationBuilder Interface. This Interface provides the mechanisms to configure

the application’s request pipeline. Looking at the code in Listing 7-1, you can see that we

have added the UseDeveloperExceptionPage middleware only when in development

mode. If we’re not in development mode, we use the UseExceptionHandler and UseHsts

middleware. Other middleware installed in our Configure method is middleware such

as UseRouting and UseAuthorization and so on.

By doing this, we are building up a request pipeline (Figure 7-1). When an HTTP

request comes into this pipeline, the first piece of middleware will look at the request

and perform some function (the function of work it was designed to perform). If this

request looks good, it will be passed on to the next piece of middleware in our pipeline.

This process repeats itself, but if one piece of middleware decides that the request is

not valid, this request pipeline can be short-circuited. Middleware that short-circuits

the request pipeline is called terminal middleware because it prevents the subsequent

middleware components from being able to process the request.

Chapter 7 Exploring Middleware

227

An example of this might be where authorization fails and that authorization

middleware returns a failed response. It will not pass the request further down the line

and therefore terminates that request because of the authorization failure.

As you can see from Figure 7-1, the middleware pipeline receives requests and sends

out responses. This means it is bidirectional and that for each request that happens,

some kind of response will occur. That response could be an error, or a page, or some

JSON. Middleware is, therefore, very important in ASP.NET Core because it defines the

behavior of your application. Let’s have a look at some of the installed middleware in our

application.

�Handling Exceptions
Because of the bidirectionality of the middleware request pipeline, any middleware

at the beginning of the pipeline is there because it needs to be the first piece of code

to do something with an incoming request or the last piece of code to do something

with an outgoing response. In Listing 7-1, our Configure method installs the

UseDeveloperExceptionPage when in development mode, first. It just passes the

requests it receives on to the next piece of middleware, but if any of those pieces of

middleware throws an exception, the UseDeveloperExceptionPage then cares about the

response and will display a developer exception. It is first in the request pipeline because

it needs to be last in the response.

When we are in production, a more friendly error page is displayed to the user,

without the stack trace, for example, that we would see when using the developer

exception page.

Figure 7-1.  The Middleware Pipeline

Chapter 7 Exploring Middleware

228

�UseHsts
We also tell the application to HSTS (HTTP Strict Transport Security Protocol) in the

response header. The UseHsts extension method was implemented from ASP.NET Core

2.1 and later. When a browser that supports HSTS receives this header, it will force all

communication over HTTPS. It also prevents users from using untrusted or invalid

certificates and will not allow the user to temporarily trust such a certificate.

HSTS is enforced by the client and, therefore, is slightly limited in that the client must

support HSTS. It also requires at least one successful HTTPS request to establish the

HSTS policy.

This can be seen in Figure 7-2. Once the secure request is made to the server, a

header is sent back called Strict Transport Security. This tells the client that for a specific

duration (default is 30 days), every request to this site must use HTTPS.

If the user comes back to the site within that duration, regardless of whether they

clicked a link, typed a URL, or used a bookmark, the browser will make the initial request

over HTTPS (Figure 7-3).

Figure 7-2.  The HSTS Response

Chapter 7 Exploring Middleware

229

Don’t use HSTS in development, because these settings are highly cacheable

by browsers. This is why the UseHsts middleware is installed when we’re only in

production.

Furthermore, you can configure options for HSTS in the ConfigureServices method

as seen in Listing 7-2.

Listing 7-2.  HSTS Options in ConfigureServices

_ = services.AddHsts(opts =>

{

 opts.Preload = true;

 opts.IncludeSubDomains = true;

 opts.MaxAge = TimeSpan.FromDays(60);

 opts.ExcludedHosts.Add("www.somesite.com");

});

Here, you will see the following options:

•	 Preload

•	 IncludeSubDomains

•	 MaxAge

•	 ExcludedHosts

The Preload option tells the browser to use HTTPS before it comes to our site. This

means that the initial HSTS response isn’t necessary as seen in Figure 7-2. The first time

the browser comes to our site, it will use HTTPS right from the get-go. You can find more

info on https://hstspreload.org.

Figure 7-3.  Subsequent Requests Within HSTS Duration

Chapter 7 Exploring Middleware

https://hstspreload.org

230

The IncludeSubDomains option is self-explanatory, but it tells the browser to apply

the HSTS policy to any subdomains for the host.

You can also set the MaxAge which tells the browser how long we want the browser to

keep track of the fact that we want to use HSTS.

Lastly, we can exclude any hosts by adding the ExcludedHosts option.

�UseHttpsRedirection
The UseHttpsRedirection middleware will send an HTTP Redirect instruction to any

browser trying to access the site via HTTP.

�UseStaticFiles
As the name suggests, this enables static files to be served. Static files are files such as

HTML, CSS, images, and JavaScript. The default directory for static files is the wwwroot

directory. The UseStaticFiles middleware will therefore look for a folder called

wwwroot by default. If we don’t want to call the web root wwwroot, then we need to tell

ASP.NET Core where the static files can be served from. We can do this by using the

UseWebRoot method on the web builder in the Program.cs file as seen in Listing 7-3.

Listing 7-3.  Changing the Web Root Folder

public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 webBuilder.UseWebRoot("wwwsite");

 });

Here, we are telling ASP.NET Core that the web root of the application has changed

to wwwsite. This is, however, not something I want to do, so I’ll leave my web root as

wwwroot.

Chapter 7 Exploring Middleware

231

This means that static files are accessible via a relative path to the wwwroot directory.

If you expand the wwwroot folder, you will see css, js, and lib by default. Because the

UseStaticFiles middleware marks files in the wwwroot as servable, referencing a CSS

file as follows "~/css/custom.css" tells ASP.NET Core to look in the web root for the file

by using the tilde ~ character.

If you need to keep your static files outside of the wwwroot folder (in a StaticFiles

folder, e.g., as illustrated in Figure 7-4), you can configure the StaticFileOptions of the

UseStaticFiles middleware as seen in Listing 7-4.

Note that you will need to import the namespaces Microsoft.Extensions.
FileProviders and System.IO.

This means that you can now reference a CSS file in the css folder under the

StaticFiles folder as "~/StaticFiles/css/custom.css".

Figure 7-4.  Using a StaticFiles Folder Outside wwwroot

Chapter 7 Exploring Middleware

232

Listing 7-4.  Use Static Files Outside of wwwroot

_ = app.UseStaticFiles(new StaticFileOptions

{

 �FileProvider = new PhysicalFileProvider(Path.Combine(env.

ContentRootPath, "StaticFiles")), RequestPath = "/StaticFiles"

});

It is interesting to note that the parameter of the PhysicalFileProvider is called

root as seen in Figure 7-5.

If you want to move the static files to your new StaticFiles folder, you will have to

update the references to these static files in the _Layout.cshtml and _LayoutSpecial.

cshtml file. This is not something that I’ll be covering in this book though. Just know that

if you had to move static files outside of the web root, you can.

�UseRouting
When an HTTP request is received, routing is responsible for matching and dispatching

the requests to the endpoints. This means that UseRouting adds route matching to the

pipeline. The middleware then finds the best matching endpoint based on the incoming

request.

�UseSession
If you have been working with ASP.NET applications for any length of time, you will

know that sessions allow us to store user data. To use sessions in our web application,

we need to call the AddSession method in the ConfigureServices method and add the

UseSession middleware in the Configure method.

Figure 7-5.  The PhysicalFileProvider Root Parameter

Chapter 7 Exploring Middleware

233

�UseEndpoints with MapRazorPages
This adds endpoint execution to the pipeline that will run a delegate associated with the

matched endpoint. When used, this middleware will add Razor page endpoints to the

pipeline.

�Creating Custom Middleware
Previously in this chapter, you saw that ASP.NET Core includes a rich set of built-in

middleware components. By now, you would also have noticed that the order in which

middleware appears in your pipeline matters. While there are a lot of middleware

components to choose from, sometimes, you might need to create a custom middleware

component. Adding custom middleware components isn’t all that difficult. As it turns

out, Visual Studio includes a template for creating a standard middleware class. Create

a new folder called CustomMiddleware in your project root, right-click it, and add a new

item. The Add New Item window is displayed as seen in Figure 7-6.

Figure 7-6.  The Middleware Template

Chapter 7 Exploring Middleware

234

In the search text box, type in the word middleware, and find the C# middleware

class template. I just called the custom middleware class MyCustomMiddleware.

When the custom middleware class is added to your project, your project should

look like Figure 7-7. The class is added with a bunch of boilerplate code as seen in

Listing 7-5.

Listing 7-5.  The Custom Middleware Class Boilerplate Code

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Http;

using System.Threading.Tasks;

namespace VideoStore.CustomMiddleware

{

 public class MyCustomMiddleware

 {

 private readonly RequestDelegate _next;

 public MyCustomMiddleware(RequestDelegate next)

 {

 _next = next;

 }

Figure 7-7.  Custom Middleware Class Added

Chapter 7 Exploring Middleware

235

 public Task Invoke(HttpContext httpContext)

 {

 return _next(httpContext);

 }

 }

 public static class MyCustomMiddlewareExtensions

 {

 �public static IApplicationBuilder UseMyCustomMiddleware(this

IApplicationBuilder builder)

 {

 return builder.UseMiddleware<MyCustomMiddleware>();

 }

 }

}

From the code in Listing 7-5, you will see that the Invoke method calls the next

delegate/middleware in the pipeline. That is all it does. This is where you want to add

your custom code.

Secondly, you will notice the static class MyCustomMiddlewareExtensions that

contains an extension method called UseMyCustomMiddleware. This extension method

exposes the custom middleware through IApplicationBuilder so that it can be added

to the request pipeline. All that I want to do in my custom middleware is write out a log

entry. Start by modifying the MyCustomMiddleware class as illustrated in Listing 7-6.

Listing 7-6.  Modified Custom Middleware Class

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

using System.Threading.Tasks;

namespace VideoStore.CustomMiddleware

{

 public class MyCustomMiddleware

 {

 private readonly RequestDelegate _next;

 private readonly ILogger _logger;

Chapter 7 Exploring Middleware

236

 �public MyCustomMiddleware(RequestDelegate next, ILoggerFactory

loggerFactory)

 {

 _next = next;

 _logger = loggerFactory.CreateLogger("MiddlewareLogger");

 }

 public async Task InvokeAsync(HttpContext httpContext)

 {

 _logger.LogInformation("**** Middleware Invoke Called ****");

 await _next(httpContext);

 }

 }

 public static class MyCustomMiddlewareExtensions

 {

 �public static IApplicationBuilder UseMyCustomMiddleware(this

IApplicationBuilder builder)

 {

 return builder.UseMiddleware<MyCustomMiddleware>();

 }

 }

}

I have modified the Invoke method to be asynchronous (changing the method name

to InvokeAsync as per convention). Secondly, I have added an ILoggerFactory via

dependency injection to create a logger for me that I can use in my custom middleware.

In the Invoke method, you would want to write your custom code before the call is made

to _next. All I did was write a log message **** Middleware Invoke Called ****.

With this in place, open your Startup.cs class, and add the using statement for

VideoStore.CustomMiddleware. You can now add the custom middleware before the

UseHttpsRedirection middleware as seen in Listing 7-7.

Chapter 7 Exploring Middleware

237

Listing 7-7.  The Modified Configure Method

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 _ = app.UseDeveloperExceptionPage();

 }

 else

 {

 _ = app.UseExceptionHandler("/Error");

 _ = app.UseHsts();

 }

 _ = app.UseMyCustomMiddleware();

 _ = app.UseHttpsRedirection();

 _ = app.UseStaticFiles();

 _ = app.UseRouting();

 _ = app.UseAuthorization();

 _ = app.UseSession();

 _ = app.UseEndpoints(endpoints =>

 {

 _ = endpoints.MapRazorPages();

 });

}

Build your application and run it. From the View menu in Visual Studio, select

Output, or type Ctrl+Alt+O. The Output pane will be displayed. In the Show output

from drop-down, select VideoStore - ASP.NET Core Web Server. You will see the

output displayed as illustrated in Figure 7-8.

Chapter 7 Exploring Middleware

238

You will see the MiddlewareLogger displayed in the Output with the message ****

Middleware Invoke Called ****. Creating custom middleware components can give

you a lot of flexibility when the built-in middleware just doesn’t quite suit your needs.

�Logging Information
Logging information is very useful when developing applications like ours. Sometimes,

you might want to see why your custom middleware isn’t working, and we already saw in

the previous section how to add logging to a custom middleware component.

Let’s have a look at how to add logging to our VideoError page. Open up the

VideoError.cshtml.cs page, and modify the code as illustrated in Listing 7-8.

Listing 7-8.  The Modified VideoErrorModel Class

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using Microsoft.Extensions.Logging;

namespace VideoStore.Pages.Videos

{

 public class VideoErrorModel : PageModel

 {

 private readonly ILogger<VideoErrorModel> _logger;

Figure 7-8.  The Output Window Showing Log Messages

Chapter 7 Exploring Middleware

239

 [BindProperty(SupportsGet = true)]

 public string Message { get; set; }

 public VideoErrorModel(ILogger<VideoErrorModel> logger)

 {

 _logger = logger;

 }

 public void OnGet()

 {

 _logger.LogError(Message);

 }

 }

}

All that I am doing here is adding an ILogger to the constructor via dependency

injection and saving that off to a private field called _logger that I can use throughout

my VideoErrorModel. All that I then do in the OnGet is log the error.

Run the application, and open up a Video Detail page. Your URL should be

something like localhost:44398/Videos/Detail/3 where 44398 is my port number

which will differ from yours, and 3 is the ID of the video we are viewing the detail

for. Your video ID will probably also be different. Change the video ID to something

impossible (force an error here by changing the video ID to an ID not in your database),

and hit Enter.

Opening up the Output window from the View ➤ Output menu in Visual Studio or by

holding down Ctrl+Alt+O, you will see the error logged in the output when you change

the drop-down to VideoStore - ASP.NET Core Web Server (Figure 7-9).

Chapter 7 Exploring Middleware

240

While this example of logging isn’t terrifically detailed, you can get an idea of how

you could implement logging in various sections of your application.

Opening up the appsettings.json file, you will see that there is a Logging

configuration section in this file (Listing 7-9).

Listing 7-9.  The appsettings.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "VideoListPageTitle": "Video Store - Videos List",

 "ConnectionStrings": {

 �"VideoConn": "Data Source=(localdb)\\MSSQLLocalDB;Initial

Catalog=VideoStore;Integrated Security=True;"

 }

}

Figure 7-9.  The Error Output Logged

Chapter 7 Exploring Middleware

241

If you expand the appsettings.json file in the Solution Explorer, you will see that

there is an appsettings.Development.json file nested under it (Figure 7-10). Therefore,

logging is provided by the Logging section of the appsettings.{Environment}.json file.

Open the appsettings.Development.json file, and you will see the JSON as illustrated

in Listing 7-10.

Listing 7-10.  The appsettings.Development.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 }

}

The keys in this appsettings.Development.json file will override the keys in the

appsettings.json when we are in development. To add a JSON file for production, just

add a new JSON file to your project, and call it appsettings.Production.json. It will

automatically be nested under the appsettings.json file as seen in Figure 7-11.

Chapter 7 Exploring Middleware

242

The environment version of the loaded appsettings file is based on the

IHostingEnvironment.EnvironmentName.

Figure 7-10.  The appsettings.Development.json File

Figure 7-11.  The appsettings.Production.json File Added

Chapter 7 Exploring Middleware

243

Looking back at Listing 7-10, you will see that the following categories are specified:

•	 Default

•	 Microsoft

•	 Microsoft.Hosting.Lifetime

The different categories log at different levels. The Default category, for example,

logs at a log level of Information, while the Microsoft category logs at a level of Warning

and higher. The Microsoft.Hosting.Lifetime category is very specific as opposed to

the Microsoft category which is quite broad.

Because we have not specified a logging provider, the LogLevel will apply to all

logging providers that are enabled.

Logging providers store logs from your application, except for the Console provider

which displays logs.

The CreateDefaultBuilder method in the Program.cs file initializes a new instance

of the HostBuilder class that adds the following logging providers:

•	 Console

•	 Debug

•	 EventSource

•	 EventLog (Windows only)

As with a lot of the defaults used by the creation of the HostBuilder class, you can

override the logging providers as seen in Listing 7-11.

Listing 7-11.  Override the Default Logging Providers

public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureLogging(log =>

 {

 log.ClearProviders();

 log.AddDebug();

 })

 .ConfigureWebHostDefaults(webBuilder =>

Chapter 7 Exploring Middleware

244

 {

 webBuilder.UseStartup<Startup>();

 });

First, we remove all instances of the ILoggerProvider by calling ClearProviders.

Then, we add the Debug logging provider.

�Only Logging What Is Necessary
The problem with log files is that, sometimes, developers can get a bit overeager. When

I am in a development environment, it is probably a good idea to see informational

logging, but in a production environment, I might only care about warnings and errors.

Think back to the custom middleware we created in Listing 7-6. Let’s modify the code

slightly as illustrated in Listing 7-12.

Listing 7-12.  Modified InvokeAsync Method in Custom Middleware

public class MyCustomMiddleware

{

 private readonly RequestDelegate _next;

 private readonly ILogger _logger;

 �public MyCustomMiddleware(RequestDelegate next, ILoggerFactory

loggerFactory)

 {

 _next = next;

 _logger = loggerFactory.CreateLogger("MiddlewareLogger");

 }

 public async Task InvokeAsync(HttpContext httpContext)

 {

 _logger.LogInformation("**** Info Middleware Invoke Called ****");

 _logger.LogWarning("**** Warning Middleware Invoke Called ****");

 _logger.LogError("**** Error Middleware Invoke Called ****");

 await _next(httpContext);

 }

}

Chapter 7 Exploring Middleware

245

I have added three log outputs, one each for LogInformation, LogWarning, and

LogError. Next, look back at Listing 7-10, and notice how we have set the default log level

in the appsettings.Development.json file to Information. Run the web application,

and view the Output window. To open up the Output window, click the View ➤ Output

menu in Visual Studio, or hold down Ctrl+Alt+O. You should see the following output as

illustrated in Figure 7-12.

All three log outputs are displayed in the Output window. We can control exactly

which log outputs we see by editing the appsettings.Development.json file as seen in

Listing 7-13.

Listing 7-13.  The Modified appsettings.Development.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Warning",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 }

}

Change the default log level to Warning as seen in Listing 7-13, and run your

application again. View the Output window, and notice that the Information logs are

now excluded from being logged (Figure 7-13).

Figure 7-12.  The Output Window Displaying Middleware Log Output

Chapter 7 Exploring Middleware

246

You might be wondering why we are seeing warning and error logs in the Output

window when we just enabled Warning as the default log level. LogLevel specifies the

minimum level to create logs for. This means that any logs with a log level greater and

equal to warnings will be logged.

The LogLevel indicates the severity of the log. The values range from 0 to 6 and are

as follows:

•	 Trace = 0

•	 Debug = 1

•	 Information = 2

•	 Warning = 3

•	 Error = 4

•	 Critical = 5

•	 None = 6

So at this point, if you are looking at the log level None and wondering why it has a log

level of 6, you’re not alone. According to the Microsoft Documentation on the LogLevel

enum (https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.

logging.loglevel), None is not used for writing log messages. Scaling up from least

critical to most critical, I would probably have started a log level of None at 0, but that’s

just me.

This means that logging is enabled for the specified level (excluding None) and

higher. If you don’t specify a LogLevel, then the logging will default to the Information

level.

Figure 7-13.  Displaying Only Warnings and Errors

Chapter 7 Exploring Middleware

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.loglevel

247

�Applying a Specific LogLevel to Production
Taking what we have seen in the previous section, you should be able to understand that

we can control what is logged. More specifically, we can control where specific logs are

logged from (or rather, from which environments). Looking back at Figure 7-11, you will

remember that we have an appsettings.Production.json file. Opening up this file, you

should see the JSON illustrated in Listing 7-14.

Listing 7-14.  The appsettings.Production.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 }

}

We are telling ASP.NET Core to log all Information log events by default. This is not

what I want. In production, I only want to see errors.

It would probably be prudent to log warnings too, but I’m only going to log errors in
this example because I want to illustrate the difference between development and
production.

Modify the appsettings.Production.json file as illustrated in Listing 7-15 by

changing the default log level to Error.

Listing 7-15.  The Modified appsettings.Production.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Error",

Chapter 7 Exploring Middleware

248

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 }

}

Next, change the default LogLevel in the appsettings.Development.json file back

to Information as seen in Listing 7-16.

Listing 7-16.  The appsettings.Development.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 }

}

Right-click the VideoStore project in your Solution Explorer, and click Properties

from the context menu. Then, click the Debug tab.

Chapter 7 Exploring Middleware

249

You will see (Figure 7-14) that the current ASPNETCORE_ENVIRONMENT variable is set to

Development.

Figure 7-14.  The VideoStore Properties Showing Environment Variables

Chapter 7 Exploring Middleware

250

Change the ASPNETCORE_ENVIRONMENT variable to Production, and save the settings

(Figure 7-15). With this setting changed, the web application will run as it would in a

production environment. Go ahead and debug your application.

Figure 7-15.  The Modified Environment Variable

Chapter 7 Exploring Middleware

251

As seen in Figure 7-16, the web application now runs as if it is in a production

environment.

Figure 7-16.  The Web Application Running in the Production Environment

Chapter 7 Exploring Middleware

252

Because we are running in a production environment, and because we have set the

default log level in the appsettings.Production.json file to Error, we will only see

error logs in the Output window (Figure 7-17).

Change the ASPNETCORE_ENVIRONMENT variable seen in Figure 7-15 back to

Development, and run your application again.

Figure 7-17.  Only Error Logs Displayed

Chapter 7 Exploring Middleware

253

Figure 7-18.  The Web Application Running in the Development Environment

As seen in Figure 7-18, the web application now runs as if it is in a development

environment.

Chapter 7 Exploring Middleware

254

Because we are running in a development environment, and because we have set the

default log level in the appsettings.Development.json file to Information, we will see

information logs and higher in the Output window (Figure 7-19).

�A Quick Look at the Log Category
When you have a look at the VideoError.cshtml.cs class, you will see that we added

the ILogger to the class via dependency injection. When we force an error on the

Video Detail page, you will see that the category name of the log message (which

is VideoStore.Pages.Videos.VideoErrorModel) in the Output window is the fully

qualified type name.

This is because ASP.NET Core uses ILogger<T> to get an instance of ILogger that

uses the fully qualified type name of T. Seeing as we use ILogger<VideoErrorModel>, we

get the fully qualified type name as the log category in the Output window.

This is in contrast to the logger we created in the MyCustomMiddleware class. There

we used an ILoggerFactory and specified the category name as MiddlewareLogger.

This is then is the category name we see in the Output window. Just refer back to

Figure 7-9 where you can see the two different log categories displayed in the Output

window.

Therefore, if you need to specify the name of your log category, then an

ILoggerFactory is the way to go. The string you specify for the category name is

arbitrary, but by convention, you should use the class name.

Figure 7-19.  Information, Warnings, and Error Messages Displayed

Chapter 7 Exploring Middleware

255

�Wrapping Up
Logging in .NET Core and ASP.NET Core is quite a large topic to cover in only a single

chapter. You can use third-party logging providers if the built-in logging providers don’t

meet your needs. You can also go ahead and create your own custom logger if you need

to. Another interesting thing to note is that you can specify event IDs for your logs. I

encourage you to spend some time reading up more on logging in .NET Core.

For a complete document on logging in ASP.NET Core, view the documentation on

Microsoft Docs: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/log

ging/?view=aspnetcore-3.1.

Chapter 7 Exploring Middleware

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/?view=aspnetcore-3.1

257
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5_8

CHAPTER 8

Web Application
Deployment
The final step in any web application is to publish and deploy it to some sort of server.

Depending on the workflow you (or your company) follows, this job might not even be

something you as a developer would typically do. Based on pull requests and releases,

you might end up with a version of the web application that is ready for deployment.

That deployment might, however, be the job of someone in your team that is responsible

for putting the published files on a server for UAT. Once UAT has passed, it can be put

into production.

Please note, this chapter assumes that you have a copy of SQL Server
Management Studio already installed. If not, refer to the following document:
https://docs.microsoft.com/en-us/sql/ssms/download-sql-
server-management-studio-ssms.

You might be the only web developer in your organization and solely responsible

for the development and deployment of your web application. Whatever your current

workflow is, in this chapter, we will take a look at deploying your web application to a

local IIS server and connecting to a local SQL Server instance.

�Getting Your Site Ready for Deployment
Before we publish the web application, I want to temporarily remove the logic in the

ConfigureServices method that uses the SQLData class in the VideoStore.Data

project. I want to focus on getting the published files working with IIS and worry about

configuring the database after I know that the site is running.

https://doi.org/10.1007/978-1-4842-6828-5_8#DOI
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

258

Listing 8-1.  The Temporarily Modified Configure Services Method

public void ConfigureServices(IServiceCollection services)

{

 _ = services.AddDbContextPool<VideoDbContext>(dbContextOptns =>

 {

 _ = dbContextOptns.UseSqlServer(

 Configuration.GetConnectionString("VideoConn"));

 });

 //_ = services.AddScoped<IVideoData, SQLData>();

 _ = services.AddSingleton<IVideoData, TestData>(); // �TODO: Change to

scoped

 _ = services.AddRazorPages().AddSessionStateTempDataProvider();

 _ = services.AddSession();

}

As seen in Listing 8-1, I have commented out the code that uses the SQLData class

when an instance of IVideoData is required and replaced it with the TestData class. Now

let’s work on publishing the web application.

To be able to deploy your web application, you will first need to publish your files.

This step takes your web application and puts all the required files in a location you

choose. From there, you can deploy those files to a web server environment. This is when

we publish to a local folder.

As seen in Figure 8-1, there are other options available for you as a developer when

right-clicking your VideoStore project and selecting Publish from the context menu.

Chapter 8 Web Application Deployment

259

We will just be publishing our web application to a local folder, but you can perform

a publish and deploy by selecting Azure, IIS, and so on. Clicking Next, you are allowed

to specify a path to publish to. I have selected C:\temp\videostore_publish as seen in

Figure 8-2.

Figure 8-1.  The Publish Dialog

Chapter 8 Web Application Deployment

260

With the publish path set, click the Finish button.

Figure 8-2.  The Publish Output Location

Chapter 8 Web Application Deployment

261

You are now presented with the Publish screen (Figure 8-3) in Visual Studio. You

can modify some of the settings here such as renaming the publish profile you just set

up, changing the configuration, target runtime, and opting to delete existing files in the

publish folder.

We aren’t going to do any of that. We simply want to publish our web application. To

do that, just click the Publish button, and Visual Studio will start to build the required

files and copy them to the output folder you selected.

After the publish has been completed, you will see the compiled files (the DLLs) in

your publish folder along with all the dependencies and configuration files.

You can also publish the web application from the command line. From the

Command Prompt, navigate to the folder where your .csproj file is.

Figure 8-3.  The Publish Screen

Chapter 8 Web Application Deployment

262

Running the dir command will display the contents of your current folder (Figure 8-4).

Here, you will see the Startup.cs, the Program.cs, and the csproj file for our project. Now,

run the command in Listing 8-2.

Listing 8-2.  The dotnet publish Command

dotnet publish -o c:\temp\videostore_publish

You will notice that we specify the output directory by using -o in the publish

command. The publish will start and copy the compiled files to the output directory

specified (Figure 8-5).

Figure 8-4.  The Location of the csproj File

Chapter 8 Web Application Deployment

263

From the Command Prompt, you can type dotnet publish --help to see the

options available when using publish from the command line. The usage is defined

as dotnet publish [options] <PROJECT | SOLUTION>. The <PROJECT | SOLUTION>

arguments specify which project or solution file to operate on. In our example, we

didn’t have to specify a directory, seeing as we were in the directory where the csproj

file was located. This means that the dotnet publish command will search the current

directory.

The options available to use with the publish command are

•	 -h, --help – Show command line help.

•	 -o, --output <OUTPUT_DIR> – The output directory to place the

published artifacts in.

•	 -f, --framework <FRAMEWORK> – The target framework to publish for.

The target framework has to be specified in the project file.

•	 -r, --runtime <RUNTIME_IDENTIFIER> – The target runtime to

publish for. This is used when creating a self-contained deployment.

The default is to publish a framework-dependent application.

•	 -c, --configuration <CONFIGURATION> – The configuration to

publish for. The default for most projects is “Debug.”

•	 --version-suffix <VERSION_SUFFIX> – Set the value of the

$(VersionSuffix) property to use when building the project.

Figure 8-5.  Publish the Web Application from the Command Line

Chapter 8 Web Application Deployment

264

•	 --manifest <MANIFEST> – The path to a target manifest file that

contains the list of packages to be excluded from the publish step.

•	 --no-build – Do not build the project before publishing. Implies

--no-restore.

•	 --self-contained – Publish the .NET Core runtime with your

application so the runtime doesn’t need to be installed on the target

machine. The default is “true” if a runtime identifier is specified.

•	 --no-self-contained – Publish your application as a framework-

dependent application without the .NET Core runtime. A supported

.NET Core runtime must be installed to run your application.

•	 /nologo, --nologo – Do not display the startup banner or the

copyright message.

•	 --interactive – Allows the command to stop and wait for user input

or action (e.g., to complete authentication).

•	 --no-restore – Do not restore the project before building.

•	 -v, --verbosity <LEVEL> – Set the MSBuild verbosity level. Allowed

values are q[uiet], m[inimal], n[ormal], d[etailed], and diag[nostic].

•	 --no-dependencies – Do not restore project-to-project references

and only restore the specified project.

•	 --force – Force all dependencies to be resolved even if the last

restore was successful. This is equivalent to deleting project.assets.

json.

Once the process has been completed, the compiled files will be copied to the output

directory as specified with the -o option. For a good reference on the dotnet publish

command, see this article on Microsoft Docs: https://docs.microsoft.com/en-us/

dotnet/core/tools/dotnet-publish.

Chapter 8 Web Application Deployment

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-publish

265

�Deploying Your Web Application to IIS
To start the deployment process, open up Internet Information Services (IIS) Manager.

You can also click Start, and enter inetmgr in the Search box, and press Enter.

With the manager open, click the server. As seen in Figure 8-6, mine is called MSI

(MSI\Dirk Strauss). Make sure that you have the Features View selected at the bottom

of the screen.

Search for the Modules section which is contained under the IIS grouping. You can

see the Modules section in Figure 8-6, the second row, second from the left. Click the

Modules section to display a list of installed modules.

Figure 8-6.  IIS Manager

Chapter 8 Web Application Deployment

266

Modules are added to a server so that you can provide some additional desired
functionality to applications. Modules can be added, edited, configured, or removed
from the Modules section.

The specific module that we are looking for is the AspNetCoreModuleV2 which is the

.NET Core Hosting Bundle (Figure 8-7). It allows ASP.NET Core apps to run with IIS, and

if you do not see it listed in the Modules section of IIS, you will need to install it before

you can deploy your application to IIS.

To find the download for the .NET Core Hosting Bundle, find the Microsoft Docs

page for The .NET Core Hosting Bundle, and find the direct download link on the page.

At the time of writing this book, the download link was as follows: https://dotnet.

microsoft.com/download/dotnet-core/thank-you/runtime-aspnetcore-5.0.1-

windows-hosting-bundle-installer.

Figure 8-7.  The AspNetCoreModuleV2 Installed

Chapter 8 Web Application Deployment

https://dotnet.microsoft.com/download/dotnet-core/thank-you/runtime-aspnetcore-5.0.1-windows-hosting-bundle-installer
https://dotnet.microsoft.com/download/dotnet-core/thank-you/runtime-aspnetcore-5.0.1-windows-hosting-bundle-installer
https://dotnet.microsoft.com/download/dotnet-core/thank-you/runtime-aspnetcore-5.0.1-windows-hosting-bundle-installer

267

Please note that a restart of IIS might be required after installing the hosting bundle.

Once the .NET Core Hosting Bundle is installed, right-click the Sites folder, and

click Add Website as seen in Figure 8-8.

You might see the default website listed here, but we are adding a new site called

VideoStore to the server.

Figure 8-8.  Add a Website

Chapter 8 Web Application Deployment

268

Figure 8-9.  The Add Website Window

Chapter 8 Web Application Deployment

269

From the Add Website window (Figure 8-9), you will need to give your website a site

name. I have just called the site VideoStore. The physical path is simply the location of

the folder that we published the web application to. Generally, I don’t like doing this and

prefer to put the published files in a specific folder other than the temp folder. Because

I’m only on my local IIS, I’m going to be a bit sneaky here and leave it pointing to the

publishing folder.

The benefit of placing the published files into a specific folder on the server is

that you can lock the folder down as required for your organization with the relevant

permissions and constraints.

The other setting we are changing on this window is the binding type. By default, it

is HTTP, but we want HTTPS. Change the binding type, and leave the default port at 443.

Being on our local IIS, and because this is a development machine, I am going to select

the IIS Express Development Certificate under the SSL certificate drop-down.

When you deploy to a live server, you would want to install a proper SSL certificate for

your website and would never select a development certificate as we have done here.

Lastly, we want to select the option to start the website immediately and then click

the OK button.

The VideoStore web application is now created in IIS and ready (Figure 8-10). Open

up your browser and type in the URL for the site which is https://localhost.

Figure 8-10.  The Added VideoStore Site

Chapter 8 Web Application Deployment

270

As seen in Figure 8-11, the deployed VideoStore site is now available and running on

localhost using HTTPS. You will also notice that the word Production is displayed in the

footer of the site because the web application is now deployed.

Figure 8-11.  The Deployed VideoStore Site

Chapter 8 Web Application Deployment

271

�Configuring the SQL Server Database
To set up our web application to connect to a SQL Server database, we can use one

of many methods. This chapter is not going to serve as an exhaustive list of methods

to configure the site to connect to SQL Server. The method you use will depend on

your specific situation. In this book, however, we will simply create the database and

configure the application to connect to it.

Start by changing the ConfigureServices method back to use the SQLData class as

seen in Listing 8-3.

Listing 8-3.  Adding in the SQLData Class Back

public void ConfigureServices(IServiceCollection services)

{

 _ = services.AddDbContextPool<VideoDbContext>(dbContextOptns =>

 {

 _ = dbContextOptns.UseSqlServer(

 Configuration.GetConnectionString("VideoConn"));

 });

 _ = services.AddScoped<IVideoData, SQLData>();

 //_ = services.AddSingleton<IVideoData, TestData>(); // �TODO: Change to

scoped

 _ = services.AddRazorPages().AddSessionStateTempDataProvider();

 _ = services.AddSession();

}

If you had to stop the VideoStore web app in IIS, publish the site, and start the

VideoStore web app in IIS, the site will not work (Figure 8-12) when you go to https://

localhost.

The reason for this is that we are telling the application to use a SQL database, and in

the appsettings.Production.json file, we have nothing listed for the connection string.

Chapter 8 Web Application Deployment

272

Let’s start resolving these issues one at a time. The first thing we need is a database.

We can generate this database create script by running the dotnet ef migrations

script command in Listing 8-4. Ensure that you are in the VideoStore.Data project in

the Command Prompt.

Listing 8-4.  Run the ef migrations script Command

dotnet ef migrations script -s ..\VideoStore\VideoStore.csproj -o c:\temp\

scripts\VideoStoreCreateScript.sql

As we have seen earlier in this book, the command specifies the startup project by

telling dotnet where the csproj file is located using the -s option.

We also specify an output directory for the create script by supplying a path after the

-o option.

After running the command, you will see the output as illustrated in Figure 8-13.

Navigating to the output folder you specified, you will see the created

VideoStoreCreateScript.sql file.

Figure 8-12.  Error 500 on Localhost

Chapter 8 Web Application Deployment

273

Next, open up SQL Server Management Studio, and create a new database called

VideoStoreLive. Run the VideoStoreCreateScript.sql file against the newly created

database to create tables.

Refreshing the database and expanding the tables folder, you will see the created

tables (Figure 8-14).

Figure 8-13.  The ef migrations script Command Run

Figure 8-14.  The Created SQL Database

Chapter 8 Web Application Deployment

274

We now need to create a new login for the VideoStoreLive database. Under

Security, right-click the Logins folder, and select New Login from the context menu

(Figure 8-15).

The Login - New dialog window will be displayed as seen in Figure 8-16. For the

login name, give it a name of videostore and (using SQL Server authentication) a

password of videopassword.

Please do not use such bad passwords. I am only just using this simple password
because we’re just illustrating concepts here. In reality, you wouldn’t ever do this in
a production environment.

With these settings in place, click the OK button to create the login.

Figure 8-15.  Create a New Login

Chapter 8 Web Application Deployment

275

You will see the newly created login in the list. Right-click the created videostore

login, and select Properties from the context menu.

Figure 8-16.  Create Login Name and Password

Chapter 8 Web Application Deployment

276

Modify the User Mapping (Figure 8-17) for the videostore login by selecting the

VideoStoreLive database as the map and the role memberships as db_datareader

and db_datawriter. The next thing we want to do is modify the appsettings.

Production.json, appsettings.Development.json, and appsettings.json files as

illustrated in Listings 8-5, 8-6, and 8-7, respectively.

We are moving the connection string that points to localdb used in development

to the appsettings.Development.json file and creating a live connection string to the

VideoStoreLive database in the appsettings.Production.json file.

Figure 8-17.  Modify Login User Mappings

Chapter 8 Web Application Deployment

277

Listing 8-5.  The Production appsettings File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "ConnectionStrings": {

 �"VideoConn": "Data Source=MSI\\MSIDEV;Initial Catalog=VideoStoreLive;

Integrated Security=False;User Id=videostore;Password=videopassword"

 }

}

Listing 8-6.  The Development appsettings File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "ConnectionStrings": {

 �"VideoConn": "Data Source=(localdb)\\MSSQLLocalDB;Initial

Catalog=VideoStore;Integrated Security=True;"

 }

}

Chapter 8 Web Application Deployment

278

Listing 8-7.  The appsettings.json File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "VideoListPageTitle": "Video Store - Videos List"

}

If you’re wondering about storing credentials in the appsettings file, your hesitation

here is correct. I’ll discuss this at the end of the chapter.

You will notice that the appsettings.json file no longer contains a connection

string. Depending on if we are running in development, or production, our application

will use the correct appsettings file.

Now we can publish the site again. Stop the VideoStore web app in IIS by clicking

the Stop button in the Manage Website panel. Publish site again by running the dotnet

publish command as seen in Listing 8-2. In the output folder for the published files,

check that the production appsettings file is present. If it is (it should be), start the

VideoStore web app in IIS.

Chapter 8 Web Application Deployment

279

Now, run your web application again in the browser. You should see Figure 8-18. If

you look at the Video of the day, you will see an empty notification.

Figure 8-18.  VideoStore Site Running Against VideoStoreLive Database

Chapter 8 Web Application Deployment

280

The reason for this is that we are now running against the SQL Server database, and

that database contains no videos. When we navigate to the list of videos, we will see no

videos listed (Figure 8-19).

Let’s create our first video by clicking the + button next to the video search.

Figure 8-19.  No Videos Exist Yet

Chapter 8 Web Application Deployment

281

We can now add a new video to our Video Store as seen in Figure 8-20.

Figure 8-20.  Adding a New Video

Chapter 8 Web Application Deployment

282

When the new video is added, we are taken to the Video Detail page as seen in

Figure 8-21.

Figure 8-21.  New Video Added

Chapter 8 Web Application Deployment

283

Swing over to SQL Server Management Studio, and run SELECT * FROM Videos

against the VideoStoreLive database. You will see the newly added video in the SQL

database (Figure 8-22).

This is all that is needed to deploy a web application to a server running IIS. It is

quite straightforward, and there are other methods you can use to get your database

created using dotnet migrations. The approach illustrated in this chapter is but one way

of deploying the web application.

Lastly, a short note on managing user secrets and connection strings.

�A Note About Connection Strings and Secrets
Earlier in this chapter, in Code Listings 8-5, 8-6, and 8-7, we used the development and

production appsettings to store the different connection strings. The problem with this

approach is that these files invariably end up in your source code repository. That isn’t a

good thing.

The reason I added the live database connection string to the appsettings.

Production.json file is to illustrate the fact that the application is using different

settings based on the environment it finds itself in. In reality, you would not be adding

connection strings containing user credentials to your config files at all.

Figure 8-22.  Viewing the Newly Added Video in MS SQL Server

Chapter 8 Web Application Deployment

284

Because we are using integrated security for the localdb connection in the

appsettings.Development.json file, storing the connection in this manner didn’t

matter. Now, however, we are working with a live SQL Server database. Storing

credentials like this is not acceptable.

If you had user credentials in the connection string to the localdb, then the use

of user secrets would be beneficial. User secrets are only beneficial in a development

environment, and not meant for production. For the production connection string,

keeping the file clean from any user credentials is the way to go. The connection can be

configured in the appsettings file on the server itself. There are various ways to keep user

credentials safe. One of these is by using the Azure Key Vault. Azure Key Vault is a cloud

service for safely and securely storing any kind of secret, be that an API key, passwords,

certificates, or any kind of crypto key used for encryption. To read up more on the Azure

Key Vault, see the following link: https://docs.microsoft.com/en-us/azure/key-

vault/general/basic-concepts.

For more information on securely storing application secrets while in development,

refer to the following Microsoft Document on user secrets: https://docs.microsoft.

com/en-us/aspnet/core/security/app-secrets.

Chapter 8 Web Application Deployment

https://docs.microsoft.com/en-us/azure/key-vault/general/basic-concepts
https://docs.microsoft.com/en-us/azure/key-vault/general/basic-concepts
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets

285
© Dirk Strauss 2021
D. Strauss, Creating ASP.NET Core Web Applications, https://doi.org/10.1007/978-1-4842-6828-5

Index

A
AddVideo Method, 110
appsettings.Development.json file, 241,

242, 245, 248, 284
appsettings.json file, 240, 278

configuration file, 20, 21
modified listmodel class, 22

appsettings.Production.json file, 247, 283
asp-for tag helper, 50, 52, 89
ASPNETCORE_ENVIRONMENT variable,

187, 250
asp-page tag helper, 59
asp-route tag helper, 62
asp-validation-for tag helper, 99, 104

B
Bad requests handling

DetailModel, 76
error page, 73
generic error page, 74
incorrect Video ID, 77
OnGet method, 77
VideoError markup, 75
VideoErrorModel class, 76
VideoError page, 75, 78

Base padding value, 209
BindProperty attribute, 50, 76
Button tag helpers, 61

C
Chrome developer tools

adding and modifying styles, 215–218
dragging elements, 213, 215
new class adding, 218, 219
page markup, 213
testing state changes, 219, 220
throttling network speed, 221–223

CommitMessage, 112, 114
Compiled CSS, 204
compilerconfig.json file, 195
Configure method, 225
ConfigureServices

method, 33, 34, 101, 116, 130, 133,
257, 271

Connection strings, 129, 283
CreateDefaultBuilder method, 243
custom.css file, 198
Custom Middleware

class added, 234
class boilerplate code, 234
log messages, 238
modified configure method, 237
modified custom

middleware class, 235
modified InvokeAsync method, 244
template, 233

Custom SCSS file added, 191
Custom TagHelper, 161–165

https://doi.org/10.1007/978-1-4842-6828-5#DOI

286

D
Data access service

implementation, 142–145
modified IVideoData interface, 109
modified OnPost method, 110
registration, 145–147

Database connection strings
appsettings.json, 129
check if LocalDB, 126
ConfigureServices method, 130
DbContext metadata, 131
LocalDB commands, 127, 128
modified VideoDbContext class, 131
MSSQLLocalDB, 126, 127

Database migrations
database creation, 140
data models, 135
DbContext info, 132
dotnet ef Command Output, 137
EntityFrameworkCore.Design

missing, 134
EntityFrameworkCore versions, 136
generated migration file, 139
history table data, 142
method error, 134
migrations added to Visual Studio, 139
SQL Server Object Explorer, 141

Data grid, 97
Data service, 29–34
DbContext class, 124, 125, 133
DbContext instances, 130
DbContext info, 132
DbContext metadata, 131
DbContextOptions, 131
DbContextOptionsBuilder, 131
Default cookie-based TempData

provider, 115

Deployed VideoStore Site, 270
Deployment

ConfigureServices method, 257
csproj file, location, 262
dotnet publish Command, 262
IIS

AspNetCoreModuleV2, 266
manager, 265
VideoStore Site, 269
Website, 267
website window, 268

publish
command, 263
dialog, 259
output location, 260
screen, 261
web application,

command line, 263
SQL Server Database, configuration,

271–283
Detail.cshtml Razor page, 114
DetailModel class, 55–57, 59, 112
Detail page

add Razor page, 54
elements, 59
expanded detail markup, 58
layout applied, 160
markup, 58
modified DetailModel Class, 57
passing video ID, 59–63
scaffolded item, adding, 53
Solution Explorer, 55
URL, 63
video, 63, 71
Video class, 56
VideoStore.Core namespace, 57

Detail Razor page commit message, 113
Development, 186

Index

287

appsettings file, 277
environment, 253

div elements, 58, 61
dotnet commands, 6, 122
dotnet ef commands, 140
dotnet publish command, 263
dotnet run command, 187

E
Edit.cshtml Razor page, 104
Edit.cshtml Page’s @page directive, 108
Edit form, 87–94
EditModel class, 84, 91, 92, 98, 99, 108, 110
Edit page

Boilerplate Code, 83
markup, 85, 93, 94
Solution Explorer, 83

Entities
MovieGenre enum, 27
.NET Core Class Library, 25
project adding, 24
Video class properties, 27
video entity with MovieGenre, 28
VideoStore.Core project, 26, 28

Entity Framework Core
context object, 120
database provider, 121
design-time components, 122
model development approaches, 120
NuGet Package, 121

EntityFrameworkCore.Design missing, 134
Entity Framework installation, 120–124
Environment tag helper, 184
Environment variables, 249
Error logs, 252
Error messages, 254
ExcludedHosts option, 230

Expanded detail markup, 58
@extend keyword, 204–208

F
Field validation, 98
Font Awesome icons, 39, 40
ForEach Detail Page Markup, 79–81
foreach loop, 47
Form validation, 101

G
Generated CSS, 197
Generic error page, 74
Genres property, 91
GetTopVideo method, 178

H
Handling errors, 72
Handling exceptions, 227
Hover state triggered, 220
href value, 62
HTTP Strict Transport Security Protocol

(HSTS)
options in ConfigureServices, 229
response, 228
subsequent requests, 229

I, J
IApplicationBuilder Interface, 226
IEnumerable<SelectListItem>

return type, 91
IHtmlHelper service, 92
ILoggerFactory, 236, 254
Include and exclude attributes, 184

INDEX

288

IncludeSubDomains option, 230
Internet information services (IIS), 265
Invoke method, 235, 236
IServiceCollection, 131
IValidatableObject, implementing,

103–107
IVideoData interface, 31, 32, 43, 95, 110
IVideoData service, 34, 101, 178

K
Keep and Peek methods, 111

L
launchSettings.json file, 184, 187
_Layout page, 156, 159, 184
_Layout.cshtml page, 149, 151
_LayoutSpecial page, 157
LentOut property, 58
LentTo field, validating, 105
LentTo property value, 58
List.cshtml.cs page, 47
ListModel class, 17, 18, 21, 35, 51
ListVideos method, 43
LocalDB commands, 127, 128
LocalDB instances, 126
Log files, 244
Logging information

appsettings.Development.json File,
241, 242

appsettings.json File, 240
ASP.NET Core, 247
default logging providers, 243
error output Logged, 240
modified VideoErrorModel Class, 238
VideoError page, 238

Logic finding

modified IVideoData Interface, 44
modified search form, 45
modified TestData Method, 44
OnGet method, 46
searchQuery, 46
TestData class, 44

Login user mappings, 276
LogLevel, 246

M
Message property, 76
Middleware

Configure Method, 225
custom creation, 233–238
handling exceptions, 227
log output, 245
pipeline, 227
UseEndpoints with MapRazorPages, 233
UseHsts, 228–230
UseHttpsRedirection, 230
UseRouting, 232
UseSession, 232
UseStaticFiles, 230–232

Mixin file’s code, 202
@mixin keyword, 201–204
Model binding, 46–52
@Model.Message property, 75
Modified compilerconfig.json file, 195
Modified ConfigureServices method, 34
Modified form markup, 50
Modified IVideoData interface, 178
Modified ListModel class, 22, 35
Modified OnGet Method, 108
Modified OnPost method, 100
Modified VideoDbContext Class, 131
Modules section, 265
MovieGenre drop-down, 89

INDEX

289

MovieGenre enum, 27
MSSQLLocalDB, 126, 127
MyCustomMiddleware class, 235, 254
MyCustomMiddlewareExtensions, 235

N
NuGet package, 121
NullReferenceException page, 72

O
OnGet method, 22, 46, 59, 71, 77, 95, 108
OnPost method, 98, 100

P, Q
@page directive, 63, 66, 75, 108
PageModel class, 18, 54
PageModel properties, 51
Page routes

changed URL, 65
changing, 64
Detail.cshtml page, 66
generated markup, 67
URL format, 67
video details, populating, 68–71
Video ID, 65

Partial tag helper, 171
Partial views

adding markup, 170–175
AddRating migrations added, 168
database update, 169
updated videos table, 169
video properties, 167
_VideoStats, 166

PhysicalFileProvider root parameter, 232
Post method, 87

Preload option, 229
PriceTagHelper class, 163, 164
Privacy policy page, 10
Privacy Razor Page, 10
Production appsettings file, 277
Production environment, 251
public void OnGet() method, 21
Publish screen, 261
Publish command, 263

R
Razor pages

coding, 16
footer, 152
ListModel Class, 18
list page added, 17
Markup and C#, 37
meta tags and CSS, 151
modified navigation menu code, 13
modified videos Razor page, 18
navigation, 152
navigation menu, 11
navigation menu code, 12
navigation menu

modified, 14
PageTitle display, 23
privacy policy page, 10
@RenderBody, 152
@RenderSection, 152, 154, 155
scripts, 152
shared layout page, 12
in Solution Explorer, 9
video data, 36
videos folder, adding, 15
videos list page, 19

@RenderBody section, 152
@RenderSection, 152, 154, 155

INDEX

290

S
Sass, 188
Save method, 96
Scoped lifetime, 103
SCSS

applied CSS style, 199
compiled files and compiler

configuration, 194
compilerconfig.json File, 195
custom SCSS file added, 191
@extend keyword, 204–208
file compiling, 193
folder, 189
functions, 208–212
@mixin keyword, 201–204
modified compilerconfig.json File, 195
partial files, 199–201
relocated compiled files, 196
star rating color, 197
style sheet, 190
_variables partial file, 200
_VideoStats Partial View, 196
web compiler, 192

Search form
coding, 40–43
Font Awesome, adding, 39, 40
markup, 47
VideoList, 52

searchQuery property, 50, 52
Search term, 48
Secret, 284
services.AddScoped method, 101
Session-based TempData provider, 117
Singleton instance, 102, 103
SQLData class, 143
SQL Server, implement DbContext, 124, 125
Static files, 183

T
Tag Helpers, 46–52
TempData

CommitMessage, 112, 114
DetailModel page, 112
Detail Razor Page Commit

Message, 113
pass conditional tempdata

message, 112
provider, changing, 115–117
Razor pages, 111

TestData class, 32, 44, 68, 110
TestData service, 95
TestData services’ constructor, 56
Test data displaying, 34–38
Transient, 103

U
UpdateVideo method, 96
UseAuthorization, 226
UseHsts, 228–230
UseHttpsRedirection middleware, 230,

236
UseMyCustomMiddleware, 235
UseRouting, 226, 232
UseSession middleware, 232
UseSqlServer method, 130
UseStaticFiles middleware, 230–232

V
Validate method, 104
value property, 47
_variables partial file, 200, 201
Video class, 56
Video class properties, 27
_videoData.Save() method, 111

INDEX

291

VideoDbContext class, 124, 125, 131
VideoError markup, 75
VideoErrorModel class, 76
VideoError page, 75, 78
Video.Id property, 59, 67
VideoListPageTitle property, 21
VideoList Search Form, 52
Video model code, 106
VideoOfTheDay View, 180
VideoOfTheDayViewComponent

Class, 177
_VideoStats.cshtml partial view, 195
_VideoStats markup, 170
_VideoStats partial view, 166, 196
VideoStore, 187
VideoStore.Core namespace, 57
VideoStore.Data csproj file, 123
VideoStore.Data project, 29, 30
VideoStore properties, 249
ViewComponents

default ViewComponent view, 181
folder, 176
modified IVideoData Interface, 178

SQLData class implementation, 179
TestData class implementation, 178
video of day, 182
VideoOfTheDay View, 180
VideoOfTheDayViewComponent

Class, 177
_ViewImports and _ViewStart files

custom TagHelper, 161–165
layout page, 157–160

_ViewStart file, 160
_ViewStart page, 156
_ViewStart markup, 156

W, X, Y, Z
Warnings, 254
Web application project, 251

configuration, 3
.NET CLI, 5–9
new project screen, 2
running, 5
template type selection, 4

Web compiler, 192

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Creating and Setting Up Your Project
	Creating Your Web Application Project
	Using the .NET CLI

	Adding and Editing Razor Pages
	Looking at the Configuration
	Working with Entities
	Creating and Registering a Data Service
	Displaying Test Data on Your Web Page

	Chapter 2: Creating Models
	Building a Search Form
	Adding Font Awesome
	Adding the Search Form Code

	Implementing the Find Logic
	Using Model Binding and Tag Helpers
	Displaying Related Data
	Passing the Video ID Through to the Detail Page

	Working with Page Routes
	Populating Video Details

	Handling Bad Requests

	Chapter 3: Modifying Data
	Editing Existing Data and Using Tag Helpers
	Building the Edit Form
	Changing the Data Service

	Validate Edited Data and Display Validation Errors
	AddSingleton vs. AddScoped vs. AddTransient
	Singleton
	Scoped
	Transient

	Implementing IValidatableObject

	Adding a New Video
	Modifying the Data Access Service
	Modifying the OnPost Method

	Working with TempData
	Changing the TempData Provider

	Chapter 4: EF Core and SQL Server
	Entity Framework Core
	Install Entity Framework
	Implement DbContext
	Specify Database Connection Strings
	Working with Database Migrations
	Implement a New Data Access Service
	Changing the Data Access Service Registration

	Chapter 5: Working with Razor Pages
	Using Sections in Your Razor Pages
	Meta Tags and CSS
	Navigation
	@RenderBody
	Footer
	Scripts Applied Across All Pages
	@RenderSection

	What Are _ViewImports and _ViewStart Files?
	Specifying a Different Layout Page
	Creating a Custom TagHelper

	Working with Partial Views
	Adding Video Properties and Updating the Database
	Adding Markup to the Partial View

	Working with ViewComponents

	Chapter 6: Adding Client-Side Logic
	Separate Production Scripts from Development Scripts
	Setting Up SCSS and Generating CSS
	SCSS Partial Files
	Using SCSS @mixin
	Using SCSS @extend
	Using SCSS Functions

	Working with Chrome Developer Tools
	Dragging Elements
	Adding and Modifying Styles
	Add a New Class
	Testing State Changes
	Throttling Network Speed

	Wrapping Up

	Chapter 7: Exploring Middleware
	What Is Middleware
	Handling Exceptions
	UseHsts
	UseHttpsRedirection
	UseStaticFiles
	UseRouting
	UseSession
	UseEndpoints with MapRazorPages

	Creating Custom Middleware
	Logging Information
	Only Logging What Is Necessary
	Applying a Specific LogLevel to Production
	A Quick Look at the Log Category
	Wrapping Up

	Chapter 8: Web Application Deployment
	Getting Your Site Ready for Deployment
	Deploying Your Web Application to IIS
	Configuring the SQL Server Database
	A Note About Connection Strings and Secrets

	Index

